2
0
mirror of git://git.code.sf.net/p/openocd/code synced 2025-08-06 04:33:26 +10:00
openocd/src/target/arm_simulator.c
Antonio Borneo 382148e4dd openocd: fix SPDX tag format for files .c
With the old checkpatch we cannot use the correct format for the
SPDX tags in the file .c, in fact the C99 comments are not allowed
and we had to use the block comment.

With the new checkpatch, let's switch to the correct SPDX format.

Change created automatically through the command:
	sed -i \
	's,^/\* *\(SPDX-License-Identifier: .*[^ ]\) *\*/$,// \1,' \
	$(find src/ contrib/ -name \*.c)

Change-Id: I6da16506baa7af718947562505dd49606d124171
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Reviewed-on: https://review.openocd.org/c/openocd/+/7153
Tested-by: jenkins
2022-09-18 08:22:01 +00:00

712 lines
20 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/***************************************************************************
* Copyright (C) 2006 by Dominic Rath *
* Dominic.Rath@gmx.de *
* *
* Copyright (C) 2008 by Hongtao Zheng *
* hontor@126.com *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "arm.h"
#include "armv4_5.h"
#include "arm_disassembler.h"
#include "arm_simulator.h"
#include <helper/binarybuffer.h>
#include "register.h"
#include <helper/log.h>
static uint32_t arm_shift(uint8_t shift, uint32_t rm,
uint32_t shift_amount, uint8_t *carry)
{
uint32_t return_value = 0;
shift_amount &= 0xff;
if (shift == 0x0) { /* LSL */
if ((shift_amount > 0) && (shift_amount <= 32)) {
return_value = rm << shift_amount;
*carry = rm >> (32 - shift_amount);
} else if (shift_amount > 32) {
return_value = 0x0;
*carry = 0x0;
} else /* (shift_amount == 0) */
return_value = rm;
} else if (shift == 0x1) { /* LSR */
if ((shift_amount > 0) && (shift_amount <= 32)) {
return_value = rm >> shift_amount;
*carry = (rm >> (shift_amount - 1)) & 1;
} else if (shift_amount > 32) {
return_value = 0x0;
*carry = 0x0;
} else /* (shift_amount == 0) */
return_value = rm;
} else if (shift == 0x2) { /* ASR */
if ((shift_amount > 0) && (shift_amount <= 32)) {
/* C right shifts of unsigned values are guaranteed to
* be logical (shift in zeroes); simulate an arithmetic
* shift (shift in signed-bit) by adding the sign bit
* manually
*/
return_value = rm >> shift_amount;
if (rm & 0x80000000)
return_value |= 0xffffffff << (32 - shift_amount);
} else if (shift_amount > 32) {
if (rm & 0x80000000) {
return_value = 0xffffffff;
*carry = 0x1;
} else {
return_value = 0x0;
*carry = 0x0;
}
} else /* (shift_amount == 0) */
return_value = rm;
} else if (shift == 0x3) { /* ROR */
if (shift_amount == 0)
return_value = rm;
else {
shift_amount = shift_amount % 32;
return_value = (rm >> shift_amount) | (rm << (32 - shift_amount));
*carry = (return_value >> 31) & 0x1;
}
} else if (shift == 0x4) { /* RRX */
return_value = rm >> 1;
if (*carry)
rm |= 0x80000000;
*carry = rm & 0x1;
}
return return_value;
}
static uint32_t arm_shifter_operand(struct arm_sim_interface *sim,
int variant, union arm_shifter_operand shifter_operand,
uint8_t *shifter_carry_out)
{
uint32_t return_value;
int instruction_size;
if (sim->get_state(sim) == ARM_STATE_ARM)
instruction_size = 4;
else
instruction_size = 2;
*shifter_carry_out = sim->get_cpsr(sim, 29, 1);
if (variant == 0) /* 32-bit immediate */
return_value = shifter_operand.immediate.immediate;
else if (variant == 1) {/* immediate shift */
uint32_t rm = sim->get_reg_mode(sim, shifter_operand.immediate_shift.rm);
/* adjust RM in case the PC is being read */
if (shifter_operand.immediate_shift.rm == 15)
rm += 2 * instruction_size;
return_value = arm_shift(shifter_operand.immediate_shift.shift,
rm, shifter_operand.immediate_shift.shift_imm,
shifter_carry_out);
} else if (variant == 2) { /* register shift */
uint32_t rm = sim->get_reg_mode(sim, shifter_operand.register_shift.rm);
uint32_t rs = sim->get_reg_mode(sim, shifter_operand.register_shift.rs);
/* adjust RM in case the PC is being read */
if (shifter_operand.register_shift.rm == 15)
rm += 2 * instruction_size;
return_value = arm_shift(shifter_operand.immediate_shift.shift,
rm, rs, shifter_carry_out);
} else {
LOG_ERROR("BUG: shifter_operand.variant not 0, 1 or 2");
return_value = 0xffffffff;
}
return return_value;
}
static int pass_condition(uint32_t cpsr, uint32_t opcode)
{
switch ((opcode & 0xf0000000) >> 28) {
case 0x0: /* EQ */
if (cpsr & 0x40000000)
return 1;
else
return 0;
case 0x1: /* NE */
if (!(cpsr & 0x40000000))
return 1;
else
return 0;
case 0x2: /* CS */
if (cpsr & 0x20000000)
return 1;
else
return 0;
case 0x3: /* CC */
if (!(cpsr & 0x20000000))
return 1;
else
return 0;
case 0x4: /* MI */
if (cpsr & 0x80000000)
return 1;
else
return 0;
case 0x5: /* PL */
if (!(cpsr & 0x80000000))
return 1;
else
return 0;
case 0x6: /* VS */
if (cpsr & 0x10000000)
return 1;
else
return 0;
case 0x7: /* VC */
if (!(cpsr & 0x10000000))
return 1;
else
return 0;
case 0x8: /* HI */
if ((cpsr & 0x20000000) && !(cpsr & 0x40000000))
return 1;
else
return 0;
case 0x9: /* LS */
if (!(cpsr & 0x20000000) || (cpsr & 0x40000000))
return 1;
else
return 0;
case 0xa: /* GE */
if (((cpsr & 0x80000000) && (cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xb: /* LT */
if (((cpsr & 0x80000000) && !(cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xc: /* GT */
if (!(cpsr & 0x40000000) &&
(((cpsr & 0x80000000) && (cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && !(cpsr & 0x10000000))))
return 1;
else
return 0;
case 0xd: /* LE */
if ((cpsr & 0x40000000) ||
((cpsr & 0x80000000) && !(cpsr & 0x10000000))
|| (!(cpsr & 0x80000000) && (cpsr & 0x10000000)))
return 1;
else
return 0;
case 0xe:
case 0xf:
return 1;
}
LOG_ERROR("BUG: should never get here");
return 0;
}
static int thumb_pass_branch_condition(uint32_t cpsr, uint16_t opcode)
{
return pass_condition(cpsr, (opcode & 0x0f00) << 20);
}
/* simulate a single step (if possible)
* if the dry_run_pc argument is provided, no state is changed,
* but the new pc is stored in the variable pointed at by the argument
*/
static int arm_simulate_step_core(struct target *target,
uint32_t *dry_run_pc, struct arm_sim_interface *sim)
{
uint32_t current_pc = sim->get_reg(sim, 15);
struct arm_instruction instruction;
int instruction_size;
int retval = ERROR_OK;
if (sim->get_state(sim) == ARM_STATE_ARM) {
uint32_t opcode;
/* get current instruction, and identify it */
retval = target_read_u32(target, current_pc, &opcode);
if (retval != ERROR_OK)
return retval;
retval = arm_evaluate_opcode(opcode, current_pc, &instruction);
if (retval != ERROR_OK)
return retval;
instruction_size = 4;
/* check condition code (for all instructions) */
if (!pass_condition(sim->get_cpsr(sim, 0, 32), opcode)) {
if (dry_run_pc)
*dry_run_pc = current_pc + instruction_size;
else
sim->set_reg(sim, 15, current_pc + instruction_size);
return ERROR_OK;
}
} else {
uint16_t opcode;
retval = target_read_u16(target, current_pc, &opcode);
if (retval != ERROR_OK)
return retval;
retval = thumb_evaluate_opcode(opcode, current_pc, &instruction);
if (retval != ERROR_OK)
return retval;
instruction_size = 2;
/* check condition code (only for branch (1) instructions) */
if ((opcode & 0xf000) == 0xd000
&& !thumb_pass_branch_condition(
sim->get_cpsr(sim, 0, 32), opcode)) {
if (dry_run_pc)
*dry_run_pc = current_pc + instruction_size;
else
sim->set_reg(sim, 15, current_pc + instruction_size);
return ERROR_OK;
}
/* Deal with 32-bit BL/BLX */
if ((opcode & 0xf800) == 0xf000) {
uint32_t high = instruction.info.b_bl_bx_blx.target_address;
retval = target_read_u16(target, current_pc+2, &opcode);
if (retval != ERROR_OK)
return retval;
retval = thumb_evaluate_opcode(opcode, current_pc, &instruction);
if (retval != ERROR_OK)
return retval;
instruction.info.b_bl_bx_blx.target_address += high;
}
}
/* examine instruction type */
/* branch instructions */
if ((instruction.type >= ARM_B) && (instruction.type <= ARM_BLX)) {
uint32_t target_address;
if (instruction.info.b_bl_bx_blx.reg_operand == -1)
target_address = instruction.info.b_bl_bx_blx.target_address;
else {
target_address = sim->get_reg_mode(sim,
instruction.info.b_bl_bx_blx.reg_operand);
if (instruction.info.b_bl_bx_blx.reg_operand == 15)
target_address += 2 * instruction_size;
}
if (dry_run_pc) {
*dry_run_pc = target_address & ~1;
return ERROR_OK;
} else {
if (instruction.type == ARM_B)
sim->set_reg(sim, 15, target_address);
else if (instruction.type == ARM_BL) {
uint32_t old_pc = sim->get_reg(sim, 15);
int t = (sim->get_state(sim) == ARM_STATE_THUMB);
sim->set_reg_mode(sim, 14, old_pc + 4 + t);
sim->set_reg(sim, 15, target_address);
} else if (instruction.type == ARM_BX) {
if (target_address & 0x1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
sim->set_reg(sim, 15, target_address & 0xfffffffe);
} else if (instruction.type == ARM_BLX) {
uint32_t old_pc = sim->get_reg(sim, 15);
int t = (sim->get_state(sim) == ARM_STATE_THUMB);
sim->set_reg_mode(sim, 14, old_pc + 4 + t);
if (target_address & 0x1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
sim->set_reg(sim, 15, target_address & 0xfffffffe);
}
return ERROR_OK;
}
}
/* data processing instructions, except compare instructions (CMP, CMN, TST, TEQ) */
else if (((instruction.type >= ARM_AND) && (instruction.type <= ARM_RSC))
|| ((instruction.type >= ARM_ORR) && (instruction.type <= ARM_MVN))) {
uint32_t rd, rn, shifter_operand;
uint8_t c = sim->get_cpsr(sim, 29, 1);
uint8_t carry_out;
rd = 0x0;
/* ARM_MOV and ARM_MVN does not use Rn */
if ((instruction.type != ARM_MOV) && (instruction.type != ARM_MVN))
rn = sim->get_reg_mode(sim, instruction.info.data_proc.rn);
else
rn = 0;
shifter_operand = arm_shifter_operand(sim,
instruction.info.data_proc.variant,
instruction.info.data_proc.shifter_operand,
&carry_out);
/* adjust Rn in case the PC is being read */
if (instruction.info.data_proc.rn == 15)
rn += 2 * instruction_size;
if (instruction.type == ARM_AND)
rd = rn & shifter_operand;
else if (instruction.type == ARM_EOR)
rd = rn ^ shifter_operand;
else if (instruction.type == ARM_SUB)
rd = rn - shifter_operand;
else if (instruction.type == ARM_RSB)
rd = shifter_operand - rn;
else if (instruction.type == ARM_ADD)
rd = rn + shifter_operand;
else if (instruction.type == ARM_ADC)
rd = rn + shifter_operand + (c & 1);
else if (instruction.type == ARM_SBC)
rd = rn - shifter_operand - (c & 1) ? 0 : 1;
else if (instruction.type == ARM_RSC)
rd = shifter_operand - rn - (c & 1) ? 0 : 1;
else if (instruction.type == ARM_ORR)
rd = rn | shifter_operand;
else if (instruction.type == ARM_BIC)
rd = rn & ~(shifter_operand);
else if (instruction.type == ARM_MOV)
rd = shifter_operand;
else if (instruction.type == ARM_MVN)
rd = ~shifter_operand;
else
LOG_WARNING("unhandled instruction type");
if (dry_run_pc) {
if (instruction.info.data_proc.rd == 15)
*dry_run_pc = rd & ~1;
else
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
} else {
if (instruction.info.data_proc.rd == 15) {
sim->set_reg_mode(sim, 15, rd & ~1);
if (rd & 1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
return ERROR_OK;
}
sim->set_reg_mode(sim, instruction.info.data_proc.rd, rd);
LOG_WARNING("no updating of flags yet");
}
}
/* compare instructions (CMP, CMN, TST, TEQ) */
else if ((instruction.type >= ARM_TST) && (instruction.type <= ARM_CMN)) {
if (dry_run_pc) {
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
} else
LOG_WARNING("no updating of flags yet");
}
/* load register instructions */
else if ((instruction.type >= ARM_LDR) && (instruction.type <= ARM_LDRSH)) {
uint32_t load_address = 0, modified_address = 0, load_value = 0;
uint32_t rn = sim->get_reg_mode(sim, instruction.info.load_store.rn);
/* adjust Rn in case the PC is being read */
if (instruction.info.load_store.rn == 15)
rn += 2 * instruction_size;
if (instruction.info.load_store.offset_mode == 0) {
if (instruction.info.load_store.u)
modified_address = rn + instruction.info.load_store.offset.offset;
else
modified_address = rn - instruction.info.load_store.offset.offset;
} else if (instruction.info.load_store.offset_mode == 1) {
uint32_t offset;
uint32_t rm = sim->get_reg_mode(sim,
instruction.info.load_store.offset.reg.rm);
uint8_t shift = instruction.info.load_store.offset.reg.shift;
uint8_t shift_imm = instruction.info.load_store.offset.reg.shift_imm;
uint8_t carry = sim->get_cpsr(sim, 29, 1);
offset = arm_shift(shift, rm, shift_imm, &carry);
if (instruction.info.load_store.u)
modified_address = rn + offset;
else
modified_address = rn - offset;
} else
LOG_ERROR("BUG: offset_mode neither 0 (offset) nor 1 (scaled register)");
if (instruction.info.load_store.index_mode == 0) {
/* offset mode
* we load from the modified address, but don't change
* the base address register
*/
load_address = modified_address;
modified_address = rn;
} else if (instruction.info.load_store.index_mode == 1) {
/* pre-indexed mode
* we load from the modified address, and write it
* back to the base address register
*/
load_address = modified_address;
} else if (instruction.info.load_store.index_mode == 2) {
/* post-indexed mode
* we load from the unmodified address, and write the
* modified address back
*/
load_address = rn;
}
if ((!dry_run_pc) || (instruction.info.load_store.rd == 15)) {
retval = target_read_u32(target, load_address, &load_value);
if (retval != ERROR_OK)
return retval;
}
if (dry_run_pc) {
if (instruction.info.load_store.rd == 15)
*dry_run_pc = load_value & ~1;
else
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
} else {
if ((instruction.info.load_store.index_mode == 1) ||
(instruction.info.load_store.index_mode == 2))
sim->set_reg_mode(sim,
instruction.info.load_store.rn,
modified_address);
if (instruction.info.load_store.rd == 15) {
sim->set_reg_mode(sim, 15, load_value & ~1);
if (load_value & 1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
return ERROR_OK;
}
sim->set_reg_mode(sim, instruction.info.load_store.rd, load_value);
}
}
/* load multiple instruction */
else if (instruction.type == ARM_LDM) {
int i;
uint32_t rn = sim->get_reg_mode(sim, instruction.info.load_store_multiple.rn);
uint32_t load_values[16];
int bits_set = 0;
for (i = 0; i < 16; i++) {
if (instruction.info.load_store_multiple.register_list & (1 << i))
bits_set++;
}
switch (instruction.info.load_store_multiple.addressing_mode) {
case 0: /* Increment after */
/* rn = rn; */
break;
case 1: /* Increment before */
rn = rn + 4;
break;
case 2: /* Decrement after */
rn = rn - (bits_set * 4) + 4;
break;
case 3: /* Decrement before */
rn = rn - (bits_set * 4);
break;
}
for (i = 0; i < 16; i++) {
if (instruction.info.load_store_multiple.register_list & (1 << i)) {
if ((!dry_run_pc) || (i == 15))
target_read_u32(target, rn, &load_values[i]);
rn += 4;
}
}
if (dry_run_pc) {
if (instruction.info.load_store_multiple.register_list & 0x8000) {
*dry_run_pc = load_values[15] & ~1;
return ERROR_OK;
}
} else {
int update_cpsr = 0;
if (instruction.info.load_store_multiple.s) {
if (instruction.info.load_store_multiple.register_list & 0x8000)
update_cpsr = 1;
}
for (i = 0; i < 16; i++) {
if (instruction.info.load_store_multiple.register_list & (1 << i)) {
if (i == 15) {
uint32_t val = load_values[i];
sim->set_reg_mode(sim, i, val & ~1);
if (val & 1)
sim->set_state(sim, ARM_STATE_THUMB);
else
sim->set_state(sim, ARM_STATE_ARM);
} else
sim->set_reg_mode(sim, i, load_values[i]);
}
}
if (update_cpsr) {
uint32_t spsr = sim->get_reg_mode(sim, 16);
sim->set_reg(sim, ARMV4_5_CPSR, spsr);
}
/* base register writeback */
if (instruction.info.load_store_multiple.w)
sim->set_reg_mode(sim, instruction.info.load_store_multiple.rn, rn);
if (instruction.info.load_store_multiple.register_list & 0x8000)
return ERROR_OK;
}
}
/* store multiple instruction */
else if (instruction.type == ARM_STM) {
int i;
if (dry_run_pc) {
/* STM wont affect PC (advance by instruction size */
} else {
uint32_t rn = sim->get_reg_mode(sim,
instruction.info.load_store_multiple.rn);
int bits_set = 0;
for (i = 0; i < 16; i++) {
if (instruction.info.load_store_multiple.register_list & (1 << i))
bits_set++;
}
switch (instruction.info.load_store_multiple.addressing_mode) {
case 0: /* Increment after */
/* rn = rn; */
break;
case 1: /* Increment before */
rn = rn + 4;
break;
case 2: /* Decrement after */
rn = rn - (bits_set * 4) + 4;
break;
case 3: /* Decrement before */
rn = rn - (bits_set * 4);
break;
}
for (i = 0; i < 16; i++) {
if (instruction.info.load_store_multiple.register_list & (1 << i)) {
target_write_u32(target, rn, sim->get_reg_mode(sim, i));
rn += 4;
}
}
/* base register writeback */
if (instruction.info.load_store_multiple.w)
sim->set_reg_mode(sim,
instruction.info.load_store_multiple.rn, rn);
}
} else if (!dry_run_pc) {
/* the instruction wasn't handled, but we're supposed to simulate it
*/
LOG_ERROR("Unimplemented instruction, could not simulate it.");
return ERROR_FAIL;
}
if (dry_run_pc) {
*dry_run_pc = current_pc + instruction_size;
return ERROR_OK;
} else {
sim->set_reg(sim, 15, current_pc + instruction_size);
return ERROR_OK;
}
}
static uint32_t armv4_5_get_reg(struct arm_sim_interface *sim, int reg)
{
struct arm *arm = (struct arm *)sim->user_data;
return buf_get_u32(arm->core_cache->reg_list[reg].value, 0, 32);
}
static void armv4_5_set_reg(struct arm_sim_interface *sim, int reg, uint32_t value)
{
struct arm *arm = (struct arm *)sim->user_data;
buf_set_u32(arm->core_cache->reg_list[reg].value, 0, 32, value);
}
static uint32_t armv4_5_get_reg_mode(struct arm_sim_interface *sim, int reg)
{
struct arm *arm = (struct arm *)sim->user_data;
return buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
arm->core_mode, reg).value, 0, 32);
}
static void armv4_5_set_reg_mode(struct arm_sim_interface *sim, int reg, uint32_t value)
{
struct arm *arm = (struct arm *)sim->user_data;
buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
arm->core_mode, reg).value, 0, 32, value);
}
static uint32_t armv4_5_get_cpsr(struct arm_sim_interface *sim, int pos, int bits)
{
struct arm *arm = (struct arm *)sim->user_data;
return buf_get_u32(arm->cpsr->value, pos, bits);
}
static enum arm_state armv4_5_get_state(struct arm_sim_interface *sim)
{
struct arm *arm = (struct arm *)sim->user_data;
return arm->core_state;
}
static void armv4_5_set_state(struct arm_sim_interface *sim, enum arm_state mode)
{
struct arm *arm = (struct arm *)sim->user_data;
arm->core_state = mode;
}
static enum arm_mode armv4_5_get_mode(struct arm_sim_interface *sim)
{
struct arm *arm = (struct arm *)sim->user_data;
return arm->core_mode;
}
int arm_simulate_step(struct target *target, uint32_t *dry_run_pc)
{
struct arm *arm = target_to_arm(target);
struct arm_sim_interface sim;
sim.user_data = arm;
sim.get_reg = &armv4_5_get_reg;
sim.set_reg = &armv4_5_set_reg;
sim.get_reg_mode = &armv4_5_get_reg_mode;
sim.set_reg_mode = &armv4_5_set_reg_mode;
sim.get_cpsr = &armv4_5_get_cpsr;
sim.get_mode = &armv4_5_get_mode;
sim.get_state = &armv4_5_get_state;
sim.set_state = &armv4_5_set_state;
return arm_simulate_step_core(target, dry_run_pc, &sim);
}