2
0
mirror of git://git.code.sf.net/p/openocd/code synced 2025-07-24 05:05:06 +10:00
openocd/src/flash/nand/mxc.c
Timo Ketola 3c63eff2d9 i.MX25: Set OOB size (MXC NFC)
SPAS register (OOB size) is left wrong after reset with respect to 2KiB page NAND chip. That will lead to ECC errors after 'reset halt'.

Change-Id: If5a4685cb8d6be35879453951611ef1059da219c
Signed-off-by: Timo Ketola <timo@exertus.fi>
Reviewed-on: http://openocd.zylin.com/384
Tested-by: jenkins
Reviewed-by: Spencer Oliver <spen@spen-soft.co.uk>
2012-01-23 11:46:43 +00:00

974 lines
29 KiB
C

/***************************************************************************
* Copyright (C) 2009 by Alexei Babich *
* Rezonans plc., Chelyabinsk, Russia *
* impatt@mail.ru *
* *
* Copyright (C) 2010 by Gaetan CARLIER *
* Trump s.a., Belgium *
* *
* Copyright (C) 2011 by Erik Ahlen *
* Avalon Innovation, Sweden *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
/*
* Freescale iMX OpenOCD NAND Flash controller support.
* based on Freescale iMX2* and iMX3* OpenOCD NAND Flash controller support.
*/
/*
* driver tested with Samsung K9F2G08UXA and Numonyx/ST NAND02G-B2D @mxc
* tested "nand probe #", "nand erase # 0 #", "nand dump # file 0 #",
* "nand write # file 0", "nand verify"
*
* get_next_halfword_from_sram_buffer() not tested
* !! all function only tested with 2k page nand device; mxc_write_page
* writes the 4 MAIN_BUFFER's and is not compatible with < 2k page
* !! oob must be be used due to NFS bug
* !! oob must be 64 bytes per 2KiB page
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "imp.h"
#include "mxc.h"
#include <target/target.h>
#define OOB_SIZE 64
#define nfc_is_v1() (mxc_nf_info->mxc_version == MXC_VERSION_MX27 || \
mxc_nf_info->mxc_version == MXC_VERSION_MX31)
#define nfc_is_v2() (mxc_nf_info->mxc_version == MXC_VERSION_MX25 || \
mxc_nf_info->mxc_version == MXC_VERSION_MX35)
/* This permits to print (in LOG_INFO) how much bytes
* has been written after a page read or write.
* This is useful when OpenOCD is used with a graphical
* front-end to estimate progression of the global read/write
*/
#undef _MXC_PRINT_STAT
/* #define _MXC_PRINT_STAT */
static const char target_not_halted_err_msg[] =
"target must be halted to use mxc NAND flash controller";
static const char data_block_size_err_msg[] =
"minimal granularity is one half-word, %" PRId32 " is incorrect";
static const char sram_buffer_bounds_err_msg[] =
"trying to access out of SRAM buffer bound (addr=0x%" PRIx32 ")";
static const char get_status_register_err_msg[] = "can't get NAND status";
static uint32_t in_sram_address;
static unsigned char sign_of_sequental_byte_read;
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr);
static int initialize_nf_controller(struct nand_device *nand);
static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value);
static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value);
static int poll_for_complete_op(struct nand_device *nand, const char *text);
static int validate_target_state(struct nand_device *nand);
static int do_data_output(struct nand_device *nand);
static int mxc_command(struct nand_device *nand, uint8_t command);
static int mxc_address(struct nand_device *nand, uint8_t address);
NAND_DEVICE_COMMAND_HANDLER(mxc_nand_device_command)
{
struct mxc_nf_controller *mxc_nf_info;
int hwecc_needed;
int x;
mxc_nf_info = malloc(sizeof(struct mxc_nf_controller));
if (mxc_nf_info == NULL) {
LOG_ERROR("no memory for nand controller");
return ERROR_FAIL;
}
nand->controller_priv = mxc_nf_info;
if (CMD_ARGC < 4) {
LOG_ERROR("use \"nand device mxc target mx25|mx27|mx31|mx35 noecc|hwecc [biswap]\"");
return ERROR_FAIL;
}
/*
* check board type
*/
if (strcmp(CMD_ARGV[2], "mx25") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX25;
mxc_nf_info->mxc_base_addr = 0xBB000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
} else if (strcmp(CMD_ARGV[2], "mx27") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX27;
mxc_nf_info->mxc_base_addr = 0xD8000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
} else if (strcmp(CMD_ARGV[2], "mx31") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX31;
mxc_nf_info->mxc_base_addr = 0xB8000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x0E00;
} else if (strcmp(CMD_ARGV[2], "mx35") == 0) {
mxc_nf_info->mxc_version = MXC_VERSION_MX35;
mxc_nf_info->mxc_base_addr = 0xBB000000;
mxc_nf_info->mxc_regs_addr = mxc_nf_info->mxc_base_addr + 0x1E00;
}
/*
* check hwecc requirements
*/
hwecc_needed = strcmp(CMD_ARGV[3], "hwecc");
if (hwecc_needed == 0)
mxc_nf_info->flags.hw_ecc_enabled = 1;
else
mxc_nf_info->flags.hw_ecc_enabled = 0;
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
mxc_nf_info->fin = MXC_NF_FIN_NONE;
mxc_nf_info->flags.target_little_endian =
(nand->target->endianness == TARGET_LITTLE_ENDIAN);
/*
* should factory bad block indicator be swaped
* as a workaround for how the nfc handles pages.
*/
if (CMD_ARGC > 4 && strcmp(CMD_ARGV[4], "biswap") == 0) {
LOG_DEBUG("BI-swap enabled");
mxc_nf_info->flags.biswap_enabled = 1;
}
/*
* testing host endianness
*/
x = 1;
if (*(char *) &x == 1)
mxc_nf_info->flags.host_little_endian = 1;
else
mxc_nf_info->flags.host_little_endian = 0;
return ERROR_OK;
}
COMMAND_HANDLER(handle_mxc_biswap_command)
{
struct nand_device *nand = NULL;
struct mxc_nf_controller *mxc_nf_info = NULL;
if (CMD_ARGC < 1 || CMD_ARGC > 2)
return ERROR_COMMAND_SYNTAX_ERROR;
int retval = CALL_COMMAND_HANDLER(nand_command_get_device, 0, &nand);
if (retval != ERROR_OK) {
command_print(CMD_CTX, "invalid nand device number or name: %s", CMD_ARGV[0]);
return ERROR_COMMAND_ARGUMENT_INVALID;
}
mxc_nf_info = nand->controller_priv;
if (CMD_ARGC == 2) {
if (strcmp(CMD_ARGV[1], "enable") == 0)
mxc_nf_info->flags.biswap_enabled = true;
else
mxc_nf_info->flags.biswap_enabled = false;
}
if (mxc_nf_info->flags.biswap_enabled)
command_print(CMD_CTX, "BI-swapping enabled on %s", nand->name);
else
command_print(CMD_CTX, "BI-swapping disabled on %s", nand->name);
return ERROR_OK;
}
static const struct command_registration mxc_sub_command_handlers[] = {
{
.name = "biswap",
.handler = handle_mxc_biswap_command ,
.help = "Turns on/off bad block information swaping from main area, "
"without parameter query status.",
.usage = "bank_id ['enable'|'disable']",
},
COMMAND_REGISTRATION_DONE
};
static const struct command_registration mxc_nand_command_handler[] = {
{
.name = "mxc",
.mode = COMMAND_ANY,
.help = "MXC NAND flash controller commands",
.chain = mxc_sub_command_handlers
},
COMMAND_REGISTRATION_DONE
};
static int mxc_init(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int validate_target_result;
uint16_t buffsize_register_content;
uint32_t sreg_content;
uint32_t SREG = MX2_FMCR;
uint32_t SEL_16BIT = MX2_FMCR_NF_16BIT_SEL;
uint32_t SEL_FMS = MX2_FMCR_NF_FMS;
int retval;
uint16_t nand_status_content;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
if (nfc_is_v1()) {
target_read_u16(target, MXC_NF_BUFSIZ, &buffsize_register_content);
mxc_nf_info->flags.one_kb_sram = !(buffsize_register_content & 0x000f);
} else
mxc_nf_info->flags.one_kb_sram = 0;
if (mxc_nf_info->mxc_version == MXC_VERSION_MX31) {
SREG = MX3_PCSR;
SEL_16BIT = MX3_PCSR_NF_16BIT_SEL;
SEL_FMS = MX3_PCSR_NF_FMS;
} else if (mxc_nf_info->mxc_version == MXC_VERSION_MX25) {
SREG = MX25_RCSR;
SEL_16BIT = MX25_RCSR_NF_16BIT_SEL;
SEL_FMS = MX25_RCSR_NF_FMS;
} else if (mxc_nf_info->mxc_version == MXC_VERSION_MX35) {
SREG = MX35_RCSR;
SEL_16BIT = MX35_RCSR_NF_16BIT_SEL;
SEL_FMS = MX35_RCSR_NF_FMS;
}
target_read_u32(target, SREG, &sreg_content);
if (!nand->bus_width) {
/* bus_width not yet defined. Read it from MXC_FMCR */
nand->bus_width = (sreg_content & SEL_16BIT) ? 16 : 8;
} else {
/* bus_width forced in soft. Sync it to MXC_FMCR */
sreg_content |= ((nand->bus_width == 16) ? SEL_16BIT : 0x00000000);
target_write_u32(target, SREG, sreg_content);
}
if (nand->bus_width == 16)
LOG_DEBUG("MXC_NF : bus is 16-bit width");
else
LOG_DEBUG("MXC_NF : bus is 8-bit width");
if (!nand->page_size) {
nand->page_size = (sreg_content & SEL_FMS) ? 2048 : 512;
} else {
sreg_content |= ((nand->page_size == 2048) ? SEL_FMS : 0x00000000);
target_write_u32(target, SREG, sreg_content);
}
if (mxc_nf_info->flags.one_kb_sram && (nand->page_size == 2048)) {
LOG_ERROR("NAND controller have only 1 kb SRAM, so "
"pagesize 2048 is incompatible with it");
} else {
LOG_DEBUG("MXC_NF : NAND controller can handle pagesize of 2048");
}
if (nfc_is_v2() && sreg_content & MX35_RCSR_NF_4K)
LOG_ERROR("MXC driver does not have support for 4k pagesize.");
initialize_nf_controller(nand);
retval = ERROR_OK;
retval |= mxc_command(nand, NAND_CMD_STATUS);
retval |= mxc_address(nand, 0x00);
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return ERROR_FAIL;
}
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
if (!(nand_status_content & 0x0080)) {
LOG_INFO("NAND read-only");
mxc_nf_info->flags.nand_readonly = 1;
} else {
mxc_nf_info->flags.nand_readonly = 0;
}
return ERROR_OK;
}
static int mxc_read_data(struct nand_device *nand, void *data)
{
int validate_target_result;
int try_data_output_from_nand_chip;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
/*
* get data from nand chip
*/
try_data_output_from_nand_chip = do_data_output(nand);
if (try_data_output_from_nand_chip != ERROR_OK) {
LOG_ERROR("mxc_read_data : read data failed : '%x'",
try_data_output_from_nand_chip);
return try_data_output_from_nand_chip;
}
if (nand->bus_width == 16)
get_next_halfword_from_sram_buffer(nand, data);
else
get_next_byte_from_sram_buffer(nand, data);
return ERROR_OK;
}
static int mxc_write_data(struct nand_device *nand, uint16_t data)
{
LOG_ERROR("write_data() not implemented");
return ERROR_NAND_OPERATION_FAILED;
}
static int mxc_reset(struct nand_device *nand)
{
/*
* validate target state
*/
int validate_target_result;
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
initialize_nf_controller(nand);
return ERROR_OK;
}
static int mxc_command(struct nand_device *nand, uint8_t command)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int validate_target_result;
int poll_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
switch (command) {
case NAND_CMD_READOOB:
command = NAND_CMD_READ0;
/* set read point for data_read() and read_block_data() to
* spare area in SRAM buffer
*/
if (nfc_is_v1())
in_sram_address = MXC_NF_V1_SPARE_BUFFER0;
else
in_sram_address = MXC_NF_V2_SPARE_BUFFER0;
break;
case NAND_CMD_READ1:
command = NAND_CMD_READ0;
/*
* offset == one half of page size
*/
in_sram_address = MXC_NF_MAIN_BUFFER0 + (nand->page_size >> 1);
break;
default:
in_sram_address = MXC_NF_MAIN_BUFFER0;
break;
}
target_write_u16(target, MXC_NF_FCMD, command);
/*
* start command input operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FCI);
poll_result = poll_for_complete_op(nand, "command");
if (poll_result != ERROR_OK)
return poll_result;
/*
* reset cursor to begin of the buffer
*/
sign_of_sequental_byte_read = 0;
/* Handle special read command and adjust NF_CFG2(FDO) */
switch (command) {
case NAND_CMD_READID:
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDID;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
break;
case NAND_CMD_STATUS:
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
target_write_u16 (target, MXC_NF_BUFADDR, 0);
in_sram_address = 0;
break;
case NAND_CMD_READ0:
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
break;
default:
/* Ohter command use the default 'One page data out' FDO */
mxc_nf_info->optype = MXC_NF_DATAOUT_PAGE;
break;
}
return ERROR_OK;
}
static int mxc_address(struct nand_device *nand, uint8_t address)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int validate_target_result;
int poll_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
target_write_u16(target, MXC_NF_FADDR, address);
/*
* start address input operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FAI);
poll_result = poll_for_complete_op(nand, "address");
if (poll_result != ERROR_OK)
return poll_result;
return ERROR_OK;
}
static int mxc_nand_ready(struct nand_device *nand, int tout)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t poll_complete_status;
int validate_target_result;
/*
* validate target state
*/
validate_target_result = validate_target_state(nand);
if (validate_target_result != ERROR_OK)
return validate_target_result;
do {
target_read_u16(target, MXC_NF_CFG2, &poll_complete_status);
if (poll_complete_status & MXC_NF_BIT_OP_DONE)
return tout;
alive_sleep(1);
}
while (tout-- > 0);
return tout;
}
static int mxc_write_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
uint16_t nand_status_content;
uint16_t swap1, swap2, new_swap1;
uint8_t bufs;
int poll_result;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (!data) {
LOG_ERROR("nothing to program");
return ERROR_NAND_OPERATION_FAILED;
}
/*
* validate target state
*/
retval = validate_target_state(nand);
if (retval != ERROR_OK)
return retval;
in_sram_address = MXC_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
retval = ERROR_OK;
retval |= mxc_command(nand, NAND_CMD_SEQIN);
retval |= mxc_address(nand, 0); /* col */
retval |= mxc_address(nand, 0); /* col */
retval |= mxc_address(nand, page & 0xff); /* page address */
retval |= mxc_address(nand, (page >> 8) & 0xff); /* page address */
retval |= mxc_address(nand, (page >> 16) & 0xff); /* page address */
target_write_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
if (oob) {
if (mxc_nf_info->flags.hw_ecc_enabled) {
/*
* part of spare block will be overrided by hardware
* ECC generator
*/
LOG_DEBUG("part of spare block will be overrided "
"by hardware ECC generator");
}
if (nfc_is_v1())
target_write_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
else {
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
while (oob_size > 0) {
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
target_write_buffer(target, addr, len, oob);
addr = align_address_v2(nand, addr + len);
oob += len;
oob_size -= len;
}
}
}
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
/* BI-swap - work-around of i.MX NFC for NAND device with page == 2kb*/
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
if (oob) {
LOG_ERROR("Due to NFC Bug, oob is not correctly implemented in mxc driver");
return ERROR_NAND_OPERATION_FAILED;
}
swap2 = 0xffff; /* Spare buffer unused forced to 0xffff */
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
if (nfc_is_v1())
target_write_u16(target, MXC_NF_V1_SPARE_BUFFER3, swap2);
else
target_write_u16(target, MXC_NF_V2_SPARE_BUFFER3, swap2);
}
/*
* start data input operation (set MXC_NF_BIT_OP_DONE==0)
*/
if (nfc_is_v1() && nand->page_size > 512)
bufs = 4;
else
bufs = 1;
for (uint8_t i = 0 ; i < bufs ; ++i) {
target_write_u16(target, MXC_NF_BUFADDR, i);
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_OP_FDI);
poll_result = poll_for_complete_op(nand, "data input");
if (poll_result != ERROR_OK)
return poll_result;
}
retval |= mxc_command(nand, NAND_CMD_PAGEPROG);
if (retval != ERROR_OK)
return retval;
/*
* check status register
*/
retval = ERROR_OK;
retval |= mxc_command(nand, NAND_CMD_STATUS);
target_write_u16 (target, MXC_NF_BUFADDR, 0);
mxc_nf_info->optype = MXC_NF_DATAOUT_NANDSTATUS;
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval |= do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR(get_status_register_err_msg);
return retval;
}
target_read_u16(target, MXC_NF_MAIN_BUFFER0, &nand_status_content);
if (nand_status_content & 0x0001) {
/*
* page not correctly written
*/
return ERROR_NAND_OPERATION_FAILED;
}
#ifdef _MXC_PRINT_STAT
LOG_INFO("%d bytes newly written", data_size);
#endif
return ERROR_OK;
}
static int mxc_read_page(struct nand_device *nand, uint32_t page,
uint8_t *data, uint32_t data_size,
uint8_t *oob, uint32_t oob_size)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int retval;
uint8_t bufs;
uint16_t swap1, swap2, new_swap1;
if (data_size % 2) {
LOG_ERROR(data_block_size_err_msg, data_size);
return ERROR_NAND_OPERATION_FAILED;
}
if (oob_size % 2) {
LOG_ERROR(data_block_size_err_msg, oob_size);
return ERROR_NAND_OPERATION_FAILED;
}
/*
* validate target state
*/
retval = validate_target_state(nand);
if (retval != ERROR_OK) {
return retval;
}
/* Reset address_cycles before mxc_command ?? */
retval = mxc_command(nand, NAND_CMD_READ0);
if (retval != ERROR_OK) return retval;
retval = mxc_address(nand, 0); /* col */
if (retval != ERROR_OK) return retval;
retval = mxc_address(nand, 0); /* col */
if (retval != ERROR_OK) return retval;
retval = mxc_address(nand, page & 0xff); /* page address */
if (retval != ERROR_OK) return retval;
retval = mxc_address(nand, (page >> 8) & 0xff); /* page address */
if (retval != ERROR_OK) return retval;
retval = mxc_address(nand, (page >> 16) & 0xff); /* page address */
if (retval != ERROR_OK) return retval;
retval = mxc_command(nand, NAND_CMD_READSTART);
if (retval != ERROR_OK) return retval;
if (nfc_is_v1() && nand->page_size > 512)
bufs = 4;
else
bufs = 1;
for (uint8_t i = 0 ; i < bufs ; ++i) {
target_write_u16(target, MXC_NF_BUFADDR, i);
mxc_nf_info->fin = MXC_NF_FIN_DATAOUT;
retval = do_data_output(nand);
if (retval != ERROR_OK) {
LOG_ERROR("MXC_NF : Error reading page %d", i);
return retval;
}
}
if (nand->page_size > 512 && mxc_nf_info->flags.biswap_enabled) {
uint32_t SPARE_BUFFER3;
/* BI-swap - work-around of mxc NFC for NAND device with page == 2k */
target_read_u16(target, MXC_NF_MAIN_BUFFER3 + 464, &swap1);
if (nfc_is_v1())
SPARE_BUFFER3 = MXC_NF_V1_SPARE_BUFFER3;
else
SPARE_BUFFER3 = MXC_NF_V2_SPARE_BUFFER3;
target_read_u16(target, SPARE_BUFFER3, &swap2);
new_swap1 = (swap1 & 0xFF00) | (swap2 >> 8);
swap2 = (swap1 << 8) | (swap2 & 0xFF);
target_write_u16(target, MXC_NF_MAIN_BUFFER3 + 464, new_swap1);
target_write_u16(target, SPARE_BUFFER3, swap2);
}
if (data)
target_read_buffer(target, MXC_NF_MAIN_BUFFER0, data_size, data);
if (oob) {
if (nfc_is_v1())
target_read_buffer(target, MXC_NF_V1_SPARE_BUFFER0, oob_size, oob);
else {
uint32_t addr = MXC_NF_V2_SPARE_BUFFER0;
while (oob_size > 0) {
uint8_t len = MIN(oob_size, MXC_NF_SPARE_BUFFER_LEN);
target_read_buffer(target, addr, len, oob);
addr = align_address_v2(nand, addr + len);
oob += len;
oob_size -= len;
}
}
}
#ifdef _MXC_PRINT_STAT
if (data_size > 0) {
/* When Operation Status is read (when page is erased),
* this function is used but data_size is null.
*/
LOG_INFO("%d bytes newly read", data_size);
}
#endif
return ERROR_OK;
}
static uint32_t align_address_v2(struct nand_device *nand, uint32_t addr)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
uint32_t ret = addr;
if (addr > MXC_NF_V2_SPARE_BUFFER0 &&
(addr & 0x1F) == MXC_NF_SPARE_BUFFER_LEN) {
ret += MXC_NF_SPARE_BUFFER_MAX - MXC_NF_SPARE_BUFFER_LEN;
} else if (addr >= (mxc_nf_info->mxc_base_addr + (uint32_t)nand->page_size))
ret = MXC_NF_V2_SPARE_BUFFER0;
return ret;
}
static int initialize_nf_controller(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t work_mode = 0;
uint16_t temp;
/*
* resets NAND flash controller in zero time ? I dont know.
*/
target_write_u16(target, MXC_NF_CFG1, MXC_NF_BIT_RESET_EN);
if (mxc_nf_info->mxc_version == MXC_VERSION_MX27)
work_mode = MXC_NF_BIT_INT_DIS; /* disable interrupt */
if (target->endianness == TARGET_BIG_ENDIAN) {
LOG_DEBUG("MXC_NF : work in Big Endian mode");
work_mode |= MXC_NF_BIT_BE_EN;
} else {
LOG_DEBUG("MXC_NF : work in Little Endian mode");
}
if (mxc_nf_info->flags.hw_ecc_enabled) {
LOG_DEBUG("MXC_NF : work with ECC mode");
work_mode |= MXC_NF_BIT_ECC_EN;
} else {
LOG_DEBUG("MXC_NF : work without ECC mode");
}
if (nfc_is_v2()) {
target_write_u16(target, MXC_NF_V2_SPAS, OOB_SIZE / 2);
if (nand->page_size) {
uint16_t pages_per_block = nand->erase_size / nand->page_size;
work_mode |= MXC_NF_V2_CFG1_PPB(ffs(pages_per_block) - 6);
}
work_mode |= MXC_NF_BIT_ECC_4BIT;
}
target_write_u16(target, MXC_NF_CFG1, work_mode);
/*
* unlock SRAM buffer for write; 2 mean "Unlock", other values means "Lock"
*/
target_write_u16(target, MXC_NF_BUFCFG, 2);
target_read_u16(target, MXC_NF_FWP, &temp);
if ((temp & 0x0007) == 1) {
LOG_ERROR("NAND flash is tight-locked, reset needed");
return ERROR_FAIL;
}
/*
* unlock NAND flash for write
*/
if (nfc_is_v1()) {
target_write_u16(target, MXC_NF_V1_UNLOCKSTART, 0x0000);
target_write_u16(target, MXC_NF_V1_UNLOCKEND, 0xFFFF);
} else {
target_write_u16(target, MXC_NF_V2_UNLOCKSTART0, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART1, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART2, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKSTART3, 0x0000);
target_write_u16(target, MXC_NF_V2_UNLOCKEND0, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND1, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND2, 0xFFFF);
target_write_u16(target, MXC_NF_V2_UNLOCKEND3, 0xFFFF);
}
target_write_u16(target, MXC_NF_FWP, 4);
/*
* 0x0000 means that first SRAM buffer @base_addr will be used
*/
target_write_u16(target, MXC_NF_BUFADDR, 0x0000);
/*
* address of SRAM buffer
*/
in_sram_address = MXC_NF_MAIN_BUFFER0;
sign_of_sequental_byte_read = 0;
return ERROR_OK;
}
static int get_next_byte_from_sram_buffer(struct nand_device *nand, uint8_t *value)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
static uint8_t even_byte = 0;
uint16_t temp;
/*
* host-big_endian ??
*/
if (sign_of_sequental_byte_read == 0)
even_byte = 0;
if (in_sram_address >
(nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
sign_of_sequental_byte_read = 0;
even_byte = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
if (nfc_is_v2())
in_sram_address = align_address_v2(nand, in_sram_address);
target_read_u16(target, in_sram_address, &temp);
if (even_byte) {
*value = temp >> 8;
even_byte = 0;
in_sram_address += 2;
} else {
*value = temp & 0xff;
even_byte = 1;
}
}
sign_of_sequental_byte_read = 1;
return ERROR_OK;
}
static int get_next_halfword_from_sram_buffer(struct nand_device *nand, uint16_t *value)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
if (in_sram_address >
(nfc_is_v1() ? MXC_NF_V1_LAST_BUFFADDR : MXC_NF_V2_LAST_BUFFADDR)) {
LOG_ERROR(sram_buffer_bounds_err_msg, in_sram_address);
*value = 0;
return ERROR_NAND_OPERATION_FAILED;
} else {
if (nfc_is_v2())
in_sram_address = align_address_v2(nand, in_sram_address);
target_read_u16(target, in_sram_address, value);
in_sram_address += 2;
}
return ERROR_OK;
}
static int poll_for_complete_op(struct nand_device *nand, const char *text)
{
if (mxc_nand_ready(nand, 1000) == -1) {
LOG_ERROR("%s sending timeout", text);
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
static int validate_target_state(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
if (target->state != TARGET_HALTED) {
LOG_ERROR(target_not_halted_err_msg);
return ERROR_NAND_OPERATION_FAILED;
}
if (mxc_nf_info->flags.target_little_endian !=
(target->endianness == TARGET_LITTLE_ENDIAN)) {
/*
* endianness changed after NAND controller probed
*/
return ERROR_NAND_OPERATION_FAILED;
}
return ERROR_OK;
}
int ecc_status_v1(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t ecc_status;
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
switch (ecc_status & 0x000c) {
case 1 << 2:
LOG_INFO("main area read with 1 (correctable) error");
break;
case 2 << 2:
LOG_INFO("main area read with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
switch (ecc_status & 0x0003) {
case 1:
LOG_INFO("spare area read with 1 (correctable) error");
break;
case 2:
LOG_INFO("main area read with more than 1 (incorrectable) error");
return ERROR_NAND_OPERATION_FAILED;
break;
}
return ERROR_OK;
}
int ecc_status_v2(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
uint16_t ecc_status;
uint8_t no_subpages;
uint8_t err;
no_subpages = nand->page_size >> 9;
target_read_u16(target, MXC_NF_ECCSTATUS, &ecc_status);
do {
err = ecc_status & 0xF;
if (err > 4) {
LOG_INFO("UnCorrectable RS-ECC Error");
return ERROR_NAND_OPERATION_FAILED;
} else if (err > 0)
LOG_INFO("%d Symbol Correctable RS-ECC Error", err);
ecc_status >>= 4;
} while (--no_subpages);
return ERROR_OK;
}
static int do_data_output(struct nand_device *nand)
{
struct mxc_nf_controller *mxc_nf_info = nand->controller_priv;
struct target *target = nand->target;
int poll_result;
switch (mxc_nf_info->fin) {
case MXC_NF_FIN_DATAOUT:
/*
* start data output operation (set MXC_NF_BIT_OP_DONE==0)
*/
target_write_u16(target, MXC_NF_CFG2, MXC_NF_BIT_DATAOUT_TYPE(mxc_nf_info->optype));
poll_result = poll_for_complete_op(nand, "data output");
if (poll_result != ERROR_OK)
return poll_result;
mxc_nf_info->fin = MXC_NF_FIN_NONE;
/*
* ECC stuff
*/
if (mxc_nf_info->optype == MXC_NF_DATAOUT_PAGE &&
mxc_nf_info->flags.hw_ecc_enabled) {
int ecc_status;
if (nfc_is_v1())
ecc_status = ecc_status_v1(nand);
else
ecc_status = ecc_status_v2(nand);
if (ecc_status != ERROR_OK)
return ecc_status;
}
break;
case MXC_NF_FIN_NONE:
break;
}
return ERROR_OK;
}
struct nand_flash_controller mxc_nand_flash_controller = {
.name = "mxc",
.nand_device_command = &mxc_nand_device_command,
.commands = mxc_nand_command_handler,
.init = &mxc_init,
.reset = &mxc_reset,
.command = &mxc_command,
.address = &mxc_address,
.write_data = &mxc_write_data,
.read_data = &mxc_read_data,
.write_page = &mxc_write_page,
.read_page = &mxc_read_page,
.nand_ready = &mxc_nand_ready,
};