2
0
mirror of git://git.code.sf.net/p/openocd/code synced 2025-08-06 08:33:56 +10:00
openocd/src/target/mem_ap.c
Antonio Borneo c6fe10de75 arm_adi_v5: fix SIGSEGV due to failing re-examine
Commit 35a503b08d ("arm_adi_v5: add ap refcount and add get/put
around ap use") modifies the examine functions of mem_ap, cortex_m,
cortex_a and aarch64 by calling dap_put_ap() and then looking again
for the mem-ap and calling dap_get_ap().
This causes an issue if the system is irresponsive and the examine
fails and left the AP pointer to NULL. If the system was already
examined the NULL pointer will cause a SIGSEGV.

Commit b6dad912b8 ("target/cortex_m: prevent segmentation fault
in cortex_m_poll()") proposes a fix for one specific case and only
on cortex_m.

Modify all the examine functions by skipping look-up for the AP if
it was already set in a previous examine; the target's AP is not
supposed to change during runtime.

Remove the partial fix for cortex_m as it is not needed anymore.

Change-Id: I806ec3b1b02fcc76e141c8dd3a65044febbf0a8c
Signed-off-by: Antonio Borneo <borneo.antonio@gmail.com>
Fixes: 35a503b08d ("arm_adi_v5: add ap refcount and add get/put around ap use")
Reviewed-on: https://review.openocd.org/c/openocd/+/7392
Tested-by: jenkins
Reviewed-by: Tomas Vanek <vanekt@fbl.cz>
2022-12-17 09:30:45 +00:00

290 lines
6.6 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2016 by Matthias Welwarsky <matthias.welwarsky@sysgo.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target.h"
#include "target_type.h"
#include "arm_adi_v5.h"
#include "register.h"
#include <jtag/jtag.h>
#define MEM_AP_COMMON_MAGIC 0x4DE4DA50
struct mem_ap {
int common_magic;
struct adiv5_dap *dap;
struct adiv5_ap *ap;
uint64_t ap_num;
};
static int mem_ap_target_create(struct target *target, Jim_Interp *interp)
{
struct mem_ap *mem_ap;
struct adiv5_private_config *pc;
pc = (struct adiv5_private_config *)target->private_config;
if (!pc)
return ERROR_FAIL;
if (pc->ap_num == DP_APSEL_INVALID) {
LOG_ERROR("AP number not specified");
return ERROR_FAIL;
}
mem_ap = calloc(1, sizeof(struct mem_ap));
if (!mem_ap) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
mem_ap->ap_num = pc->ap_num;
mem_ap->common_magic = MEM_AP_COMMON_MAGIC;
mem_ap->dap = pc->dap;
target->arch_info = mem_ap;
if (!target->gdb_port_override)
target->gdb_port_override = strdup("disabled");
return ERROR_OK;
}
static int mem_ap_init_target(struct command_context *cmd_ctx, struct target *target)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return ERROR_OK;
}
static void mem_ap_deinit_target(struct target *target)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("%s", __func__);
if (mem_ap->ap)
dap_put_ap(mem_ap->ap);
free(target->private_config);
free(target->arch_info);
return;
}
static int mem_ap_arch_state(struct target *target)
{
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static int mem_ap_poll(struct target *target)
{
if (target->state == TARGET_UNKNOWN) {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}
return ERROR_OK;
}
static int mem_ap_halt(struct target *target)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
static int mem_ap_resume(struct target *target, int current, target_addr_t address,
int handle_breakpoints, int debug_execution)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
return ERROR_OK;
}
static int mem_ap_step(struct target *target, int current, target_addr_t address,
int handle_breakpoints)
{
LOG_DEBUG("%s", __func__);
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
return ERROR_OK;
}
static int mem_ap_assert_reset(struct target *target)
{
target->state = TARGET_RESET;
target->debug_reason = DBG_REASON_UNDEFINED;
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static int mem_ap_examine(struct target *target)
{
struct mem_ap *mem_ap = target->arch_info;
if (!target_was_examined(target)) {
if (!mem_ap->ap) {
mem_ap->ap = dap_get_ap(mem_ap->dap, mem_ap->ap_num);
if (!mem_ap->ap) {
LOG_ERROR("Cannot get AP");
return ERROR_FAIL;
}
}
target_set_examined(target);
target->state = TARGET_UNKNOWN;
target->debug_reason = DBG_REASON_UNDEFINED;
return mem_ap_init(mem_ap->ap);
}
return ERROR_OK;
}
static int mem_ap_deassert_reset(struct target *target)
{
if (target->reset_halt) {
target->state = TARGET_HALTED;
target->debug_reason = DBG_REASON_DBGRQ;
target_call_event_callbacks(target, TARGET_EVENT_HALTED);
} else {
target->state = TARGET_RUNNING;
target->debug_reason = DBG_REASON_NOTHALTED;
}
LOG_DEBUG("%s", __func__);
return ERROR_OK;
}
static int mem_ap_reg_get(struct reg *reg)
{
return ERROR_OK;
}
static int mem_ap_reg_set(struct reg *reg, uint8_t *buf)
{
return ERROR_OK;
}
static struct reg_arch_type mem_ap_reg_arch_type = {
.get = mem_ap_reg_get,
.set = mem_ap_reg_set,
};
static const char *mem_ap_get_gdb_arch(struct target *target)
{
return "arm";
}
/*
* Dummy ARM register emulation:
* reg[0..15]: 32 bits, r0~r12, sp, lr, pc
* reg[16..23]: 96 bits, f0~f7
* reg[24]: 32 bits, fps
* reg[25]: 32 bits, cpsr
*
* Set 'exist' only to reg[0..15], so initial response to GDB is correct
*/
#define NUM_REGS 26
#define MAX_REG_SIZE 96
#define REG_EXIST(n) ((n) < 16)
#define REG_SIZE(n) ((((n) >= 16) && ((n) < 24)) ? 96 : 32)
struct mem_ap_alloc_reg_list {
/* reg_list must be the first field */
struct reg *reg_list[NUM_REGS];
struct reg regs[NUM_REGS];
uint8_t regs_value[MAX_REG_SIZE / 8];
};
static int mem_ap_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
struct mem_ap_alloc_reg_list *mem_ap_alloc = calloc(1, sizeof(struct mem_ap_alloc_reg_list));
if (!mem_ap_alloc) {
LOG_ERROR("Out of memory");
return ERROR_FAIL;
}
*reg_list = mem_ap_alloc->reg_list;
*reg_list_size = NUM_REGS;
struct reg *regs = mem_ap_alloc->regs;
for (int i = 0; i < NUM_REGS; i++) {
regs[i].number = i;
regs[i].value = mem_ap_alloc->regs_value;
regs[i].size = REG_SIZE(i);
regs[i].exist = REG_EXIST(i);
regs[i].type = &mem_ap_reg_arch_type;
(*reg_list)[i] = &regs[i];
}
return ERROR_OK;
}
static int mem_ap_read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("Reading memory at physical address " TARGET_ADDR_FMT
"; size %" PRIu32 "; count %" PRIu32, address, size, count);
if (count == 0 || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
return mem_ap_read_buf(mem_ap->ap, buffer, size, count, address);
}
static int mem_ap_write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count,
const uint8_t *buffer)
{
struct mem_ap *mem_ap = target->arch_info;
LOG_DEBUG("Writing memory at physical address " TARGET_ADDR_FMT
"; size %" PRIu32 "; count %" PRIu32, address, size, count);
if (count == 0 || !buffer)
return ERROR_COMMAND_SYNTAX_ERROR;
return mem_ap_write_buf(mem_ap->ap, buffer, size, count, address);
}
struct target_type mem_ap_target = {
.name = "mem_ap",
.target_create = mem_ap_target_create,
.init_target = mem_ap_init_target,
.deinit_target = mem_ap_deinit_target,
.examine = mem_ap_examine,
.target_jim_configure = adiv5_jim_configure,
.poll = mem_ap_poll,
.arch_state = mem_ap_arch_state,
.halt = mem_ap_halt,
.resume = mem_ap_resume,
.step = mem_ap_step,
.assert_reset = mem_ap_assert_reset,
.deassert_reset = mem_ap_deassert_reset,
.get_gdb_arch = mem_ap_get_gdb_arch,
.get_gdb_reg_list = mem_ap_get_gdb_reg_list,
.read_memory = mem_ap_read_memory,
.write_memory = mem_ap_write_memory,
};