1
0
mirror of https://github.com/sjlongland/cluster-powerctl.git synced 2025-09-13 12:03:14 +10:00
cluster-powerctl/powerctl.c
Stuart Longland 27612b9173
powerctl: Split out core loop functions.
This just tries to make things a bit more readable by reducing the depth
of indentation, as per guidance in the Linux kernel style documentation.
2018-09-22 14:38:32 +10:00

504 lines
11 KiB
C

#include <avr/interrupt.h>
#include <avr/io.h>
#include <stdint.h>
#include <avr/pgmspace.h>
#include "board.h"
#include "setpoints.h"
/*! ADMUX setting for selecting 1.1V reference */
#define ADC_REF_1V1 (2 << REFS0)
/*! ADMUX setting for mains input voltage reading */
#define ADC_MUX_MAINS (ADC_REF_1V1 | 0x00)
/*! ADMUX setting for solar input voltage reading */
#define ADC_MUX_SOLAR (ADC_REF_1V1 | 0x01)
/*! ADMUX setting for battery input voltage reading */
#define ADC_MUX_BATT (ADC_REF_1V1 | 0x02)
/*! ADMUX setting for temperature reading */
#define ADC_MUX_TEMP (ADC_REF_1V1 | 0x22)
/*!
* Macro for computing ADC measurements. This assumes the input to the
* ADC pin is via a voltage divider made up of resistors R1 and R2, with
* the input voltage applied across both resistors and the ADC measuring
* across R2.
*
* @param mv Voltage in millivolts
* @returns Approximate ADC reading
*/
# define ADC_READ(mv) ( \
(ADC_MAX * ((uint64_t)(mv)) * VDIV_R2) \
/ \
(ADC_REF * (VDIV_R1 + VDIV_R2)) \
)
/* --- Thresholds --- */
#define V_H_ADC ADC_READ(V_H_MV)
#define V_L_ADC ADC_READ(V_L_MV)
#define V_CL_ADC ADC_READ(V_CL_MV)
#define V_SOL_MIN_ADC ADC_READ(V_SOL_MIN_MV)
/* --- Timeouts --- */
#define T_ADC_TICKS TIMER_TICKS(T_ADC_MS)
#define T_LED_TICKS TIMER_TICKS(T_LED_MS)
#define STATE_INIT (0) /*!< Initial start-up state */
#define STATE_SOLAR (1) /*!< Running from solar */
#define STATE_MAINS_CHG (2) /*!< Charging from mains */
#define STATE_MAINS_FLT (3) /*!< Floating on mains */
/*!
* Charger state machine state. We have four states we can be in.
*/
static volatile uint8_t charger_state = STATE_INIT;
/*!
* For state machine, the last state of the ADC MUX so we know whether
* to ignore the sample or not. Datasheet recommends discarding samples
* to let things stabalise when switching sources/references.
*/
static volatile uint8_t last_admux = 0;
/*!
* Current reading of the battery voltage in ADC units.
*/
static volatile uint16_t v_bat_adc = 0;
/*!
* Current reading of the solar voltage in ADC units.
*/
static volatile uint16_t v_sol_adc = 0;
/*!
* Current reading of the internal temperature sensor in ADC units.
*/
static volatile uint16_t temp_adc = 0;
/*!
* One-second event timer
*/
static volatile uint16_t t_second = 0;
/*!
* How long before we next take a reading?
*/
static volatile uint16_t t_adc = 0;
/*!
* Battery voltage timeout, used for:
* - low voltage timeout
* - charge timeout
* - float timeout
*/
static volatile uint16_t t_batt = 0;
/*!
* Fan kick-start timeout
*/
static volatile uint8_t t_fan = 0;
/*!
* LED blink interval
*/
static volatile uint8_t t_led = 0;
/*!
* HAL state
*/
static volatile uint8_t hal_state = 0;
#define HAL_STATE_ADC_CHECKED (1 << 0)
#define HAL_STATE_LED_BLINK_POL (1 << 7)
/*!
* LED blink state
*/
static volatile uint8_t led_blink = 0;
/*!
* Switch to charging from mains power.
*/
static void enter_mains_chg(void) {
/* Reset timer */
t_batt = T_CHARGE_S;
/* Enable mains power */
FET_PORT &= ~FET_MAINS;
/* Indicate via LEDs */
if (charger_state == STATE_MAINS_FLT) {
/* We have regressed from floating state */
led_blink &= ~LED_BATT_CHG;
led_blink |= LED_BATT_FLT;
} else {
led_blink &= ~(LED_BATT_CHG | LED_BATT_FLT);
}
LED_PORT |= LED_BATT_CHG;
LED_PORT &= ~LED_BATT_FLT;
/* Enter state */
charger_state = STATE_MAINS_CHG;
}
/*!
* Switch to floating on mains power.
*/
static void enter_mains_float(void) {
/* Reset timer */
t_batt = T_FLOAT_S;
/* Indicate via LEDs */
led_blink &= ~(LED_BATT_CHG | LED_BATT_FLT);
LED_PORT &= ~LED_BATT_CHG;
LED_PORT |= LED_BATT_FLT;
/* Enter state */
charger_state = STATE_MAINS_FLT;
}
/*!
* Switch to running on solar.
*/
static void enter_solar(void) {
/* Inhibit mains */
FET_PORT |= FET_MAINS;
/* Indicate via LEDs */
led_blink &= ~(LED_BATT_CHG | LED_BATT_FLT);
LED_PORT &= ~(LED_BATT_FLT | LED_BATT_CHG);
/* Enter state */
charger_state = STATE_SOLAR;
}
/*!
* Checks at start-up
*/
static void init_check(void) {
/* Wait until we have our first readings from the ADC */
if (!(hal_state & HAL_STATE_ADC_CHECKED))
return;
if (
/* Battery is low */
(v_bat_adc < V_L_ADC)
/* Solar voltage is low */
|| (v_sol_adc < V_SOL_MIN_ADC)
)
/* Battery/solar is low, begin charging */
enter_mains_chg();
else
/* Run from solar */
enter_solar();
}
/*!
* Checks whilst running on solar
*/
static void solar_check(void) {
if (v_bat_adc > V_L_ADC) {
/* Battery is above low threshold, reset low timer */
t_batt = T_LOW_S;
} else if (
/* Battery is low */
v_bat_adc < V_L_ADC
) {
if (
/* Battery is critically low */
(v_bat_adc < V_CL_ADC)
/* Battery is low for >T_LOW_S seconds */
|| (!t_batt)
/* Solar voltage is low */
|| (v_sol_adc < V_SOL_MIN_ADC)
) {
/* Move to mains power */
enter_mains_chg();
return;
} else {
/*
* Blink charge LED to indicate we consider
* the battery low.
*/
led_blink |= LED_BATT_CHG;
}
}
}
/*!
* Checks whilst charging from mains
*/
static void mains_chg_check(void) {
if (
/* Charger has been active for T_CHARGE_S seconds */
(!t_batt)
/* Battery has reached the floating voltage */
&& (v_bat_adc >= V_H_ADC)
) {
/* We've reached the float voltage */
enter_mains_float();
return;
}
}
/*!
* Checks whilst floating on mains
*/
static void mains_float_check(void) {
if (v_bat_adc < V_H_ADC) {
/* We've regressed, go back to charging state! */
enter_mains_chg();
return;
} else if (
/* Battery is high for ≥T_FLOAT_S seconds */
(!t_batt)
/* Solar voltage is high */
&& (v_sol_adc >= V_SOL_MIN_ADC)
) {
/* Solar can take it from here */
enter_solar();
}
}
/*!
* Check the state of the solar input, and update the output state
* accordingly.
*/
static void adc_check_solar(void) {
/*
* The "SOLAR" FET is no longer fitted, so this is more
* an indication of whether we consider solar to be
* "good enough". In short, it's just controlling the
* LED where the MOSFET was now.
*/
if (v_sol_adc < V_SOL_MIN_ADC)
FET_PORT |= FET_SOLAR;
else
FET_PORT &= ~FET_SOLAR;
}
/*!
* Check the state of the temperature sensor and the fan. Adjust
* motor PWM and LED outputs as required.
*/
static void adc_check_temp(void) {
/* Temperature LED and Fan control */
if (t_fan) {
/* Kick-start mode */
OCR0A = FAN_PWM_MAX;
} else if (temp_adc > TEMP_MAX) {
/* We're at the maximum temperature, FULL SPEED! */
OCR0A = FAN_PWM_MAX;
led_blink &= (LED_TEMP_HIGH | LED_TEMP_LOW);
LED_PORT &= ~LED_TEMP_LOW;
LED_PORT |= LED_TEMP_HIGH;
} else if (temp_adc > TEMP_MIN) {
/* Scale fan speed linearly with temperature */
uint8_t pwm = (((temp_adc - TEMP_MIN)
* FAN_PWM_MAX)
/ (TEMP_MAX - TEMP_MIN));
LED_PORT &= ~LED_TEMP_HIGH;
if (OCR0A < FAN_PWM_MIN) {
/* Enter kick-start mode */
t_fan = T_FAN_S;
led_blink |= LED_TEMP_LOW;
} else {
led_blink &= ~LED_TEMP_LOW;
LED_PORT |= LED_TEMP_LOW;
if (pwm > FAN_PWM_MIN) {
OCR0A = pwm;
} else {
OCR0A = FAN_PWM_MIN;
}
}
} else {
/* Turn fans off completely. */
OCR0A = 0;
led_blink &= (LED_TEMP_HIGH | LED_TEMP_LOW);
LED_PORT &= (LED_TEMP_HIGH | LED_TEMP_LOW);
}
}
/*!
* Check the battery voltage and update the battery LEDs accordingly.
*/
static void adc_check_batt(void) {
/* Battery state LED control */
if (v_bat_adc <= V_CL_ADC) {
/* Battery is critically low */
led_blink |= LED_BATT_GOOD;
} else if (v_bat_adc <= V_L_ADC) {
/* Battery is low */
led_blink &= ~LED_BATT_GOOD;
LED_PORT &= ~LED_BATT_GOOD;
} else {
led_blink &= ~LED_BATT_GOOD;
LED_PORT |= LED_BATT_GOOD;
}
}
/*!
* Check to see if a second has elapsed, if it has, tick down each of
* the one-second resolution timers.
*/
static void loop_second_tasks(void) {
if (!t_second) {
/* One second passed, tick down the 1-second timers. */
t_second = TIMER_FREQ;
if (t_batt)
t_batt--;
if (t_fan)
t_fan--;
}
}
/*!
* Check to see if our ADC state machine has advanced, If so,
* check the state of all our ADC-dependent inputs.
*/
static void loop_adc_tasks(void) {
if (!t_adc) {
t_adc = T_ADC_TICKS;
ADCSRA |= (1 << ADEN) | (1 << ADSC);
while(ADCSRA & (1 << ADEN));
adc_check_solar();
adc_check_temp();
adc_check_batt();
/* Charger control */
switch (charger_state) {
case STATE_INIT:
init_check();
break;
case STATE_SOLAR:
solar_check();
break;
case STATE_MAINS_CHG:
mains_chg_check();
break;
case STATE_MAINS_FLT:
mains_float_check();
break;
default:
charger_state = STATE_INIT;
}
}
}
/*!
* Check to see if our LED control timer has elapsed. If so
* blink the LEDs that have been selected for blinking.
*/
static void loop_led_tasks(void) {
if (!t_led) {
/*
* Decide whether we're turning blinking LEDs on
* or off. One bit keeps all blinking LEDs in phase.
*/
hal_state ^= HAL_STATE_LED_BLINK_POL;
/* Apply that state to all selected LEDs */
if (hal_state & HAL_STATE_LED_BLINK_POL)
LED_PORT |= led_blink;
else
LED_PORT &= ~led_blink;
/* Reset timer */
t_led = T_LED_TICKS;
}
}
/*!
* Main entrypoint
*/
int main(void) {
/* Configure LEDs */
LED_PORT_DDR_REG = LED_PORT_DDR_VAL;
LED_PORT = 0;
/* Configure MOSFETs */
FET_PORT_DDR_REG = FET_PORT_DDR_VAL;
FET_PORT = FET_MAINS | FET_SOLAR;
/* Turn on ADC and timers */
PRR &= ~((1 << PRTIM0) | (1 << PRTIM1) | (1 << PRADC));
/* Configure Timer0: Fan PWM */
TCCR0A = (1 << COM0A1) | (1 << WGM01) | (1 << WGM00);
TCCR0B = (1 << CS00);
OCR0A = 0;
/*
* Configure Timer1: TIMER_FREQ System tick timer
* / baud rate generator for debug output
*/
TCCR1A = 0;
TCCR1B = (1 << WGM12) | (1 << CS10);
TCCR1C = 0;
OCR1A = F_CPU/TIMER_FREQ;
TIMSK1 = (1 << OCIE1A);
/* ADC configuration */
DIDR0 = ADC_CH_EN;
ADMUX = ADC_MUX_TEMP;
ADCSRB = (1 << ADLAR);
ADCSRA = (1 << ADIE)
| (1 << ADPS2)
| (1 << ADPS1)
| (1 << ADPS0);
/* Start interrupts */
sei();
MCUSR = 0;
/* Enter core loop */
while(1) {
loop_second_tasks();
loop_adc_tasks();
loop_led_tasks();
}
return 0;
}
ISR(TIM1_COMPA_vect) {
/* One-second timer for longer events */
if (t_second)
t_second--;
/* ADC tick events */
if (t_adc)
t_adc--;
}
ISR(ADC_vect) {
uint16_t adc = ADCW;
if (last_admux == ADMUX) {
switch(last_admux) {
case ADC_MUX_TEMP:
temp_adc = adc;
ADMUX = ADC_MUX_BATT;
ADCSRA |= (1 << ADSC);
break;
case ADC_MUX_BATT:
v_bat_adc = adc;
ADMUX = ADC_MUX_SOLAR;
ADCSRA |= (1 << ADSC);
break;
case ADC_MUX_SOLAR:
v_sol_adc = adc;
/* Once we get here, we've done a full cycle */
hal_state |= HAL_STATE_ADC_CHECKED;
default:
ADMUX = ADC_MUX_TEMP;
ADCSRA &= ~(1 << ADEN);
}
} else {
ADCSRA |= (1 << ADSC);
last_admux = ADMUX;
}
}