linux-mainline/mm/zsmalloc.c
Sergey Senozhatsky 02f5bf89f0 zsmalloc: don't underflow size calculation in zs_obj_write()
Do not mix class->size and object size during offsets/sizes calculation in
zs_obj_write().  Size classes can merge into clusters, based on
objects-per-zspage and pages-per-zspage characteristics, so some size
classes can store objects smaller than class->size.  This becomes
problematic when object size is much smaller than class->size.  zsmalloc
can falsely decide that object spans two physical pages, because a larger
class->size value is used for that check, while the actual object is much
smaller and fits the free space of the first physical page, so there is
nothing to write to the second page and memcpy() size calculation
underflows.

 Unable to handle kernel paging request at virtual address ffffc00081ff4000
 pc : __memcpy+0x10/0x24
 lr : zs_obj_write+0x1b0/0x1d0 [zsmalloc]
 Call trace:
  __memcpy+0x10/0x24 (P)
  zram_write_page+0x150/0x4fc [zram]
  zram_submit_bio+0x5e0/0x6a4 [zram]
  __submit_bio+0x168/0x220
  submit_bio_noacct_nocheck+0x128/0x2c8
  submit_bio_noacct+0x19c/0x2f8

This is mostly seen on system with larger page-sizes, because size class
cluters of such systems hold wider size ranges than on 4K PAGE_SIZE
systems.

Assume a 16K PAGE_SIZE system, a write of 820 bytes object to a 864-bytes
size class at offset 15560.  15560 + 864 is more than 16384 so zsmalloc
attempts to memcpy() it to two physical pages.  However, 16384 - 15560 =
824 which is more than 820, so the object in fact doesn't span two
physical pages, and there is no data to write to the second physical page.

We always know the exact size in bytes of the object that we are about to
write (store), so use it instead of class->size.

Link: https://lkml.kernel.org/r/20250507054312.4135983-1-senozhatsky@chromium.org
Fixes: 44f7641349 ("zsmalloc: introduce new object mapping API")
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reported-by: Igor Belousov <igor.b@beldev.am>
Tested-by: Igor Belousov <igor.b@beldev.am>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2025-05-11 17:26:07 -07:00

2272 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* zsmalloc memory allocator
*
* Copyright (C) 2011 Nitin Gupta
* Copyright (C) 2012, 2013 Minchan Kim
*
* This code is released using a dual license strategy: BSD/GPL
* You can choose the license that better fits your requirements.
*
* Released under the terms of 3-clause BSD License
* Released under the terms of GNU General Public License Version 2.0
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
/*
* lock ordering:
* page_lock
* pool->lock
* class->lock
* zspage->lock
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/bitops.h>
#include <linux/errno.h>
#include <linux/highmem.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/pgtable.h>
#include <asm/tlbflush.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <linux/vmalloc.h>
#include <linux/preempt.h>
#include <linux/spinlock.h>
#include <linux/sprintf.h>
#include <linux/shrinker.h>
#include <linux/types.h>
#include <linux/debugfs.h>
#include <linux/zsmalloc.h>
#include <linux/zpool.h>
#include <linux/migrate.h>
#include <linux/wait.h>
#include <linux/pagemap.h>
#include <linux/fs.h>
#include <linux/local_lock.h>
#include "zpdesc.h"
#define ZSPAGE_MAGIC 0x58
/*
* This must be power of 2 and greater than or equal to sizeof(link_free).
* These two conditions ensure that any 'struct link_free' itself doesn't
* span more than 1 page which avoids complex case of mapping 2 pages simply
* to restore link_free pointer values.
*/
#define ZS_ALIGN 8
#define ZS_HANDLE_SIZE (sizeof(unsigned long))
/*
* Object location (<PFN>, <obj_idx>) is encoded as
* a single (unsigned long) handle value.
*
* Note that object index <obj_idx> starts from 0.
*
* This is made more complicated by various memory models and PAE.
*/
#ifndef MAX_POSSIBLE_PHYSMEM_BITS
#ifdef MAX_PHYSMEM_BITS
#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
#else
/*
* If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
* be PAGE_SHIFT
*/
#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
#endif
#endif
#define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
/*
* Head in allocated object should have OBJ_ALLOCATED_TAG
* to identify the object was allocated or not.
* It's okay to add the status bit in the least bit because
* header keeps handle which is 4byte-aligned address so we
* have room for two bit at least.
*/
#define OBJ_ALLOCATED_TAG 1
#define OBJ_TAG_BITS 1
#define OBJ_TAG_MASK OBJ_ALLOCATED_TAG
#define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
#define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
#define HUGE_BITS 1
#define FULLNESS_BITS 4
#define CLASS_BITS 8
#define MAGIC_VAL_BITS 8
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(CONFIG_ZSMALLOC_CHAIN_SIZE, UL))
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
#define ZS_MIN_ALLOC_SIZE \
MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
/* each chunk includes extra space to keep handle */
#define ZS_MAX_ALLOC_SIZE PAGE_SIZE
/*
* On systems with 4K page size, this gives 255 size classes! There is a
* trader-off here:
* - Large number of size classes is potentially wasteful as free page are
* spread across these classes
* - Small number of size classes causes large internal fragmentation
* - Probably its better to use specific size classes (empirically
* determined). NOTE: all those class sizes must be set as multiple of
* ZS_ALIGN to make sure link_free itself never has to span 2 pages.
*
* ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
* (reason above)
*/
#define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
ZS_SIZE_CLASS_DELTA) + 1)
/*
* Pages are distinguished by the ratio of used memory (that is the ratio
* of ->inuse objects to all objects that page can store). For example,
* INUSE_RATIO_10 means that the ratio of used objects is > 0% and <= 10%.
*
* The number of fullness groups is not random. It allows us to keep
* difference between the least busy page in the group (minimum permitted
* number of ->inuse objects) and the most busy page (maximum permitted
* number of ->inuse objects) at a reasonable value.
*/
enum fullness_group {
ZS_INUSE_RATIO_0,
ZS_INUSE_RATIO_10,
/* NOTE: 8 more fullness groups here */
ZS_INUSE_RATIO_99 = 10,
ZS_INUSE_RATIO_100,
NR_FULLNESS_GROUPS,
};
enum class_stat_type {
/* NOTE: stats for 12 fullness groups here: from inuse 0 to 100 */
ZS_OBJS_ALLOCATED = NR_FULLNESS_GROUPS,
ZS_OBJS_INUSE,
NR_CLASS_STAT_TYPES,
};
struct zs_size_stat {
unsigned long objs[NR_CLASS_STAT_TYPES];
};
#ifdef CONFIG_ZSMALLOC_STAT
static struct dentry *zs_stat_root;
#endif
static size_t huge_class_size;
struct size_class {
spinlock_t lock;
struct list_head fullness_list[NR_FULLNESS_GROUPS];
/*
* Size of objects stored in this class. Must be multiple
* of ZS_ALIGN.
*/
int size;
int objs_per_zspage;
/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
int pages_per_zspage;
unsigned int index;
struct zs_size_stat stats;
};
/*
* Placed within free objects to form a singly linked list.
* For every zspage, zspage->freeobj gives head of this list.
*
* This must be power of 2 and less than or equal to ZS_ALIGN
*/
struct link_free {
union {
/*
* Free object index;
* It's valid for non-allocated object
*/
unsigned long next;
/*
* Handle of allocated object.
*/
unsigned long handle;
};
};
struct zs_pool {
const char *name;
struct size_class *size_class[ZS_SIZE_CLASSES];
struct kmem_cache *handle_cachep;
struct kmem_cache *zspage_cachep;
atomic_long_t pages_allocated;
struct zs_pool_stats stats;
/* Compact classes */
struct shrinker *shrinker;
#ifdef CONFIG_ZSMALLOC_STAT
struct dentry *stat_dentry;
#endif
#ifdef CONFIG_COMPACTION
struct work_struct free_work;
#endif
/* protect zspage migration/compaction */
rwlock_t lock;
atomic_t compaction_in_progress;
};
static inline void zpdesc_set_first(struct zpdesc *zpdesc)
{
SetPagePrivate(zpdesc_page(zpdesc));
}
static inline void zpdesc_inc_zone_page_state(struct zpdesc *zpdesc)
{
inc_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
}
static inline void zpdesc_dec_zone_page_state(struct zpdesc *zpdesc)
{
dec_zone_page_state(zpdesc_page(zpdesc), NR_ZSPAGES);
}
static inline struct zpdesc *alloc_zpdesc(gfp_t gfp)
{
struct page *page = alloc_page(gfp);
return page_zpdesc(page);
}
static inline void free_zpdesc(struct zpdesc *zpdesc)
{
struct page *page = zpdesc_page(zpdesc);
__free_page(page);
}
#define ZS_PAGE_UNLOCKED 0
#define ZS_PAGE_WRLOCKED -1
struct zspage_lock {
spinlock_t lock;
int cnt;
struct lockdep_map dep_map;
};
struct zspage {
struct {
unsigned int huge:HUGE_BITS;
unsigned int fullness:FULLNESS_BITS;
unsigned int class:CLASS_BITS + 1;
unsigned int magic:MAGIC_VAL_BITS;
};
unsigned int inuse;
unsigned int freeobj;
struct zpdesc *first_zpdesc;
struct list_head list; /* fullness list */
struct zs_pool *pool;
struct zspage_lock zsl;
};
static void zspage_lock_init(struct zspage *zspage)
{
static struct lock_class_key __key;
struct zspage_lock *zsl = &zspage->zsl;
lockdep_init_map(&zsl->dep_map, "zspage->lock", &__key, 0);
spin_lock_init(&zsl->lock);
zsl->cnt = ZS_PAGE_UNLOCKED;
}
/*
* The zspage lock can be held from atomic contexts, but it needs to remain
* preemptible when held for reading because it remains held outside of those
* atomic contexts, otherwise we unnecessarily lose preemptibility.
*
* To achieve this, the following rules are enforced on readers and writers:
*
* - Writers are blocked by both writers and readers, while readers are only
* blocked by writers (i.e. normal rwlock semantics).
*
* - Writers are always atomic (to allow readers to spin waiting for them).
*
* - Writers always use trylock (as the lock may be held be sleeping readers).
*
* - Readers may spin on the lock (as they can only wait for atomic writers).
*
* - Readers may sleep while holding the lock (as writes only use trylock).
*/
static void zspage_read_lock(struct zspage *zspage)
{
struct zspage_lock *zsl = &zspage->zsl;
rwsem_acquire_read(&zsl->dep_map, 0, 0, _RET_IP_);
spin_lock(&zsl->lock);
zsl->cnt++;
spin_unlock(&zsl->lock);
lock_acquired(&zsl->dep_map, _RET_IP_);
}
static void zspage_read_unlock(struct zspage *zspage)
{
struct zspage_lock *zsl = &zspage->zsl;
rwsem_release(&zsl->dep_map, _RET_IP_);
spin_lock(&zsl->lock);
zsl->cnt--;
spin_unlock(&zsl->lock);
}
static __must_check bool zspage_write_trylock(struct zspage *zspage)
{
struct zspage_lock *zsl = &zspage->zsl;
spin_lock(&zsl->lock);
if (zsl->cnt == ZS_PAGE_UNLOCKED) {
zsl->cnt = ZS_PAGE_WRLOCKED;
rwsem_acquire(&zsl->dep_map, 0, 1, _RET_IP_);
lock_acquired(&zsl->dep_map, _RET_IP_);
return true;
}
spin_unlock(&zsl->lock);
return false;
}
static void zspage_write_unlock(struct zspage *zspage)
{
struct zspage_lock *zsl = &zspage->zsl;
rwsem_release(&zsl->dep_map, _RET_IP_);
zsl->cnt = ZS_PAGE_UNLOCKED;
spin_unlock(&zsl->lock);
}
/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
static void SetZsHugePage(struct zspage *zspage)
{
zspage->huge = 1;
}
static bool ZsHugePage(struct zspage *zspage)
{
return zspage->huge;
}
#ifdef CONFIG_COMPACTION
static void kick_deferred_free(struct zs_pool *pool);
static void init_deferred_free(struct zs_pool *pool);
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
#else
static void kick_deferred_free(struct zs_pool *pool) {}
static void init_deferred_free(struct zs_pool *pool) {}
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
#endif
static int create_cache(struct zs_pool *pool)
{
char *name;
name = kasprintf(GFP_KERNEL, "zs_handle-%s", pool->name);
if (!name)
return -ENOMEM;
pool->handle_cachep = kmem_cache_create(name, ZS_HANDLE_SIZE,
0, 0, NULL);
kfree(name);
if (!pool->handle_cachep)
return -EINVAL;
name = kasprintf(GFP_KERNEL, "zspage-%s", pool->name);
if (!name)
return -ENOMEM;
pool->zspage_cachep = kmem_cache_create(name, sizeof(struct zspage),
0, 0, NULL);
kfree(name);
if (!pool->zspage_cachep) {
kmem_cache_destroy(pool->handle_cachep);
pool->handle_cachep = NULL;
return -EINVAL;
}
return 0;
}
static void destroy_cache(struct zs_pool *pool)
{
kmem_cache_destroy(pool->handle_cachep);
kmem_cache_destroy(pool->zspage_cachep);
}
static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
{
return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
}
static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
{
kmem_cache_free(pool->handle_cachep, (void *)handle);
}
static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
{
return kmem_cache_zalloc(pool->zspage_cachep,
flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
}
static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
{
kmem_cache_free(pool->zspage_cachep, zspage);
}
/* class->lock(which owns the handle) synchronizes races */
static void record_obj(unsigned long handle, unsigned long obj)
{
*(unsigned long *)handle = obj;
}
/* zpool driver */
#ifdef CONFIG_ZPOOL
static void *zs_zpool_create(const char *name, gfp_t gfp)
{
/*
* Ignore global gfp flags: zs_malloc() may be invoked from
* different contexts and its caller must provide a valid
* gfp mask.
*/
return zs_create_pool(name);
}
static void zs_zpool_destroy(void *pool)
{
zs_destroy_pool(pool);
}
static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
unsigned long *handle)
{
*handle = zs_malloc(pool, size, gfp);
if (IS_ERR_VALUE(*handle))
return PTR_ERR((void *)*handle);
return 0;
}
static void zs_zpool_free(void *pool, unsigned long handle)
{
zs_free(pool, handle);
}
static void *zs_zpool_obj_read_begin(void *pool, unsigned long handle,
void *local_copy)
{
return zs_obj_read_begin(pool, handle, local_copy);
}
static void zs_zpool_obj_read_end(void *pool, unsigned long handle,
void *handle_mem)
{
zs_obj_read_end(pool, handle, handle_mem);
}
static void zs_zpool_obj_write(void *pool, unsigned long handle,
void *handle_mem, size_t mem_len)
{
zs_obj_write(pool, handle, handle_mem, mem_len);
}
static u64 zs_zpool_total_pages(void *pool)
{
return zs_get_total_pages(pool);
}
static struct zpool_driver zs_zpool_driver = {
.type = "zsmalloc",
.owner = THIS_MODULE,
.create = zs_zpool_create,
.destroy = zs_zpool_destroy,
.malloc = zs_zpool_malloc,
.free = zs_zpool_free,
.obj_read_begin = zs_zpool_obj_read_begin,
.obj_read_end = zs_zpool_obj_read_end,
.obj_write = zs_zpool_obj_write,
.total_pages = zs_zpool_total_pages,
};
MODULE_ALIAS("zpool-zsmalloc");
#endif /* CONFIG_ZPOOL */
static inline bool __maybe_unused is_first_zpdesc(struct zpdesc *zpdesc)
{
return PagePrivate(zpdesc_page(zpdesc));
}
/* Protected by class->lock */
static inline int get_zspage_inuse(struct zspage *zspage)
{
return zspage->inuse;
}
static inline void mod_zspage_inuse(struct zspage *zspage, int val)
{
zspage->inuse += val;
}
static struct zpdesc *get_first_zpdesc(struct zspage *zspage)
{
struct zpdesc *first_zpdesc = zspage->first_zpdesc;
VM_BUG_ON_PAGE(!is_first_zpdesc(first_zpdesc), zpdesc_page(first_zpdesc));
return first_zpdesc;
}
#define FIRST_OBJ_PAGE_TYPE_MASK 0xffffff
static inline unsigned int get_first_obj_offset(struct zpdesc *zpdesc)
{
VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
return zpdesc->first_obj_offset & FIRST_OBJ_PAGE_TYPE_MASK;
}
static inline void set_first_obj_offset(struct zpdesc *zpdesc, unsigned int offset)
{
/* With 24 bits available, we can support offsets into 16 MiB pages. */
BUILD_BUG_ON(PAGE_SIZE > SZ_16M);
VM_WARN_ON_ONCE(!PageZsmalloc(zpdesc_page(zpdesc)));
VM_WARN_ON_ONCE(offset & ~FIRST_OBJ_PAGE_TYPE_MASK);
zpdesc->first_obj_offset &= ~FIRST_OBJ_PAGE_TYPE_MASK;
zpdesc->first_obj_offset |= offset & FIRST_OBJ_PAGE_TYPE_MASK;
}
static inline unsigned int get_freeobj(struct zspage *zspage)
{
return zspage->freeobj;
}
static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
{
zspage->freeobj = obj;
}
static struct size_class *zspage_class(struct zs_pool *pool,
struct zspage *zspage)
{
return pool->size_class[zspage->class];
}
/*
* zsmalloc divides the pool into various size classes where each
* class maintains a list of zspages where each zspage is divided
* into equal sized chunks. Each allocation falls into one of these
* classes depending on its size. This function returns index of the
* size class which has chunk size big enough to hold the given size.
*/
static int get_size_class_index(int size)
{
int idx = 0;
if (likely(size > ZS_MIN_ALLOC_SIZE))
idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
ZS_SIZE_CLASS_DELTA);
return min_t(int, ZS_SIZE_CLASSES - 1, idx);
}
static inline void class_stat_add(struct size_class *class, int type,
unsigned long cnt)
{
class->stats.objs[type] += cnt;
}
static inline void class_stat_sub(struct size_class *class, int type,
unsigned long cnt)
{
class->stats.objs[type] -= cnt;
}
static inline unsigned long class_stat_read(struct size_class *class, int type)
{
return class->stats.objs[type];
}
#ifdef CONFIG_ZSMALLOC_STAT
static void __init zs_stat_init(void)
{
if (!debugfs_initialized()) {
pr_warn("debugfs not available, stat dir not created\n");
return;
}
zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
}
static void __exit zs_stat_exit(void)
{
debugfs_remove_recursive(zs_stat_root);
}
static unsigned long zs_can_compact(struct size_class *class);
static int zs_stats_size_show(struct seq_file *s, void *v)
{
int i, fg;
struct zs_pool *pool = s->private;
struct size_class *class;
int objs_per_zspage;
unsigned long obj_allocated, obj_used, pages_used, freeable;
unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
unsigned long total_freeable = 0;
unsigned long inuse_totals[NR_FULLNESS_GROUPS] = {0, };
seq_printf(s, " %5s %5s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %9s %13s %10s %10s %16s %8s\n",
"class", "size", "10%", "20%", "30%", "40%",
"50%", "60%", "70%", "80%", "90%", "99%", "100%",
"obj_allocated", "obj_used", "pages_used",
"pages_per_zspage", "freeable");
for (i = 0; i < ZS_SIZE_CLASSES; i++) {
class = pool->size_class[i];
if (class->index != i)
continue;
spin_lock(&class->lock);
seq_printf(s, " %5u %5u ", i, class->size);
for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++) {
inuse_totals[fg] += class_stat_read(class, fg);
seq_printf(s, "%9lu ", class_stat_read(class, fg));
}
obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
obj_used = class_stat_read(class, ZS_OBJS_INUSE);
freeable = zs_can_compact(class);
spin_unlock(&class->lock);
objs_per_zspage = class->objs_per_zspage;
pages_used = obj_allocated / objs_per_zspage *
class->pages_per_zspage;
seq_printf(s, "%13lu %10lu %10lu %16d %8lu\n",
obj_allocated, obj_used, pages_used,
class->pages_per_zspage, freeable);
total_objs += obj_allocated;
total_used_objs += obj_used;
total_pages += pages_used;
total_freeable += freeable;
}
seq_puts(s, "\n");
seq_printf(s, " %5s %5s ", "Total", "");
for (fg = ZS_INUSE_RATIO_10; fg < NR_FULLNESS_GROUPS; fg++)
seq_printf(s, "%9lu ", inuse_totals[fg]);
seq_printf(s, "%13lu %10lu %10lu %16s %8lu\n",
total_objs, total_used_objs, total_pages, "",
total_freeable);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
{
if (!zs_stat_root) {
pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
return;
}
pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
&zs_stats_size_fops);
}
static void zs_pool_stat_destroy(struct zs_pool *pool)
{
debugfs_remove_recursive(pool->stat_dentry);
}
#else /* CONFIG_ZSMALLOC_STAT */
static void __init zs_stat_init(void)
{
}
static void __exit zs_stat_exit(void)
{
}
static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
{
}
static inline void zs_pool_stat_destroy(struct zs_pool *pool)
{
}
#endif
/*
* For each size class, zspages are divided into different groups
* depending on their usage ratio. This function returns fullness
* status of the given page.
*/
static int get_fullness_group(struct size_class *class, struct zspage *zspage)
{
int inuse, objs_per_zspage, ratio;
inuse = get_zspage_inuse(zspage);
objs_per_zspage = class->objs_per_zspage;
if (inuse == 0)
return ZS_INUSE_RATIO_0;
if (inuse == objs_per_zspage)
return ZS_INUSE_RATIO_100;
ratio = 100 * inuse / objs_per_zspage;
/*
* Take integer division into consideration: a page with one inuse
* object out of 127 possible, will end up having 0 usage ratio,
* which is wrong as it belongs in ZS_INUSE_RATIO_10 fullness group.
*/
return ratio / 10 + 1;
}
/*
* Each size class maintains various freelists and zspages are assigned
* to one of these freelists based on the number of live objects they
* have. This functions inserts the given zspage into the freelist
* identified by <class, fullness_group>.
*/
static void insert_zspage(struct size_class *class,
struct zspage *zspage,
int fullness)
{
class_stat_add(class, fullness, 1);
list_add(&zspage->list, &class->fullness_list[fullness]);
zspage->fullness = fullness;
}
/*
* This function removes the given zspage from the freelist identified
* by <class, fullness_group>.
*/
static void remove_zspage(struct size_class *class, struct zspage *zspage)
{
int fullness = zspage->fullness;
VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
list_del_init(&zspage->list);
class_stat_sub(class, fullness, 1);
}
/*
* Each size class maintains zspages in different fullness groups depending
* on the number of live objects they contain. When allocating or freeing
* objects, the fullness status of the page can change, for instance, from
* INUSE_RATIO_80 to INUSE_RATIO_70 when freeing an object. This function
* checks if such a status change has occurred for the given page and
* accordingly moves the page from the list of the old fullness group to that
* of the new fullness group.
*/
static int fix_fullness_group(struct size_class *class, struct zspage *zspage)
{
int newfg;
newfg = get_fullness_group(class, zspage);
if (newfg == zspage->fullness)
goto out;
remove_zspage(class, zspage);
insert_zspage(class, zspage, newfg);
out:
return newfg;
}
static struct zspage *get_zspage(struct zpdesc *zpdesc)
{
struct zspage *zspage = zpdesc->zspage;
BUG_ON(zspage->magic != ZSPAGE_MAGIC);
return zspage;
}
static struct zpdesc *get_next_zpdesc(struct zpdesc *zpdesc)
{
struct zspage *zspage = get_zspage(zpdesc);
if (unlikely(ZsHugePage(zspage)))
return NULL;
return zpdesc->next;
}
/**
* obj_to_location - get (<zpdesc>, <obj_idx>) from encoded object value
* @obj: the encoded object value
* @zpdesc: zpdesc object resides in zspage
* @obj_idx: object index
*/
static void obj_to_location(unsigned long obj, struct zpdesc **zpdesc,
unsigned int *obj_idx)
{
*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
*obj_idx = (obj & OBJ_INDEX_MASK);
}
static void obj_to_zpdesc(unsigned long obj, struct zpdesc **zpdesc)
{
*zpdesc = pfn_zpdesc(obj >> OBJ_INDEX_BITS);
}
/**
* location_to_obj - get obj value encoded from (<zpdesc>, <obj_idx>)
* @zpdesc: zpdesc object resides in zspage
* @obj_idx: object index
*/
static unsigned long location_to_obj(struct zpdesc *zpdesc, unsigned int obj_idx)
{
unsigned long obj;
obj = zpdesc_pfn(zpdesc) << OBJ_INDEX_BITS;
obj |= obj_idx & OBJ_INDEX_MASK;
return obj;
}
static unsigned long handle_to_obj(unsigned long handle)
{
return *(unsigned long *)handle;
}
static inline bool obj_allocated(struct zpdesc *zpdesc, void *obj,
unsigned long *phandle)
{
unsigned long handle;
struct zspage *zspage = get_zspage(zpdesc);
if (unlikely(ZsHugePage(zspage))) {
VM_BUG_ON_PAGE(!is_first_zpdesc(zpdesc), zpdesc_page(zpdesc));
handle = zpdesc->handle;
} else
handle = *(unsigned long *)obj;
if (!(handle & OBJ_ALLOCATED_TAG))
return false;
/* Clear all tags before returning the handle */
*phandle = handle & ~OBJ_TAG_MASK;
return true;
}
static void reset_zpdesc(struct zpdesc *zpdesc)
{
struct page *page = zpdesc_page(zpdesc);
__ClearPageMovable(page);
ClearPagePrivate(page);
zpdesc->zspage = NULL;
zpdesc->next = NULL;
__ClearPageZsmalloc(page);
}
static int trylock_zspage(struct zspage *zspage)
{
struct zpdesc *cursor, *fail;
for (cursor = get_first_zpdesc(zspage); cursor != NULL; cursor =
get_next_zpdesc(cursor)) {
if (!zpdesc_trylock(cursor)) {
fail = cursor;
goto unlock;
}
}
return 1;
unlock:
for (cursor = get_first_zpdesc(zspage); cursor != fail; cursor =
get_next_zpdesc(cursor))
zpdesc_unlock(cursor);
return 0;
}
static void __free_zspage(struct zs_pool *pool, struct size_class *class,
struct zspage *zspage)
{
struct zpdesc *zpdesc, *next;
assert_spin_locked(&class->lock);
VM_BUG_ON(get_zspage_inuse(zspage));
VM_BUG_ON(zspage->fullness != ZS_INUSE_RATIO_0);
next = zpdesc = get_first_zpdesc(zspage);
do {
VM_BUG_ON_PAGE(!zpdesc_is_locked(zpdesc), zpdesc_page(zpdesc));
next = get_next_zpdesc(zpdesc);
reset_zpdesc(zpdesc);
zpdesc_unlock(zpdesc);
zpdesc_dec_zone_page_state(zpdesc);
zpdesc_put(zpdesc);
zpdesc = next;
} while (zpdesc != NULL);
cache_free_zspage(pool, zspage);
class_stat_sub(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
atomic_long_sub(class->pages_per_zspage, &pool->pages_allocated);
}
static void free_zspage(struct zs_pool *pool, struct size_class *class,
struct zspage *zspage)
{
VM_BUG_ON(get_zspage_inuse(zspage));
VM_BUG_ON(list_empty(&zspage->list));
/*
* Since zs_free couldn't be sleepable, this function cannot call
* lock_page. The page locks trylock_zspage got will be released
* by __free_zspage.
*/
if (!trylock_zspage(zspage)) {
kick_deferred_free(pool);
return;
}
remove_zspage(class, zspage);
__free_zspage(pool, class, zspage);
}
/* Initialize a newly allocated zspage */
static void init_zspage(struct size_class *class, struct zspage *zspage)
{
unsigned int freeobj = 1;
unsigned long off = 0;
struct zpdesc *zpdesc = get_first_zpdesc(zspage);
while (zpdesc) {
struct zpdesc *next_zpdesc;
struct link_free *link;
void *vaddr;
set_first_obj_offset(zpdesc, off);
vaddr = kmap_local_zpdesc(zpdesc);
link = (struct link_free *)vaddr + off / sizeof(*link);
while ((off += class->size) < PAGE_SIZE) {
link->next = freeobj++ << OBJ_TAG_BITS;
link += class->size / sizeof(*link);
}
/*
* We now come to the last (full or partial) object on this
* page, which must point to the first object on the next
* page (if present)
*/
next_zpdesc = get_next_zpdesc(zpdesc);
if (next_zpdesc) {
link->next = freeobj++ << OBJ_TAG_BITS;
} else {
/*
* Reset OBJ_TAG_BITS bit to last link to tell
* whether it's allocated object or not.
*/
link->next = -1UL << OBJ_TAG_BITS;
}
kunmap_local(vaddr);
zpdesc = next_zpdesc;
off %= PAGE_SIZE;
}
set_freeobj(zspage, 0);
}
static void create_page_chain(struct size_class *class, struct zspage *zspage,
struct zpdesc *zpdescs[])
{
int i;
struct zpdesc *zpdesc;
struct zpdesc *prev_zpdesc = NULL;
int nr_zpdescs = class->pages_per_zspage;
/*
* Allocate individual pages and link them together as:
* 1. all pages are linked together using zpdesc->next
* 2. each sub-page point to zspage using zpdesc->zspage
*
* we set PG_private to identify the first zpdesc (i.e. no other zpdesc
* has this flag set).
*/
for (i = 0; i < nr_zpdescs; i++) {
zpdesc = zpdescs[i];
zpdesc->zspage = zspage;
zpdesc->next = NULL;
if (i == 0) {
zspage->first_zpdesc = zpdesc;
zpdesc_set_first(zpdesc);
if (unlikely(class->objs_per_zspage == 1 &&
class->pages_per_zspage == 1))
SetZsHugePage(zspage);
} else {
prev_zpdesc->next = zpdesc;
}
prev_zpdesc = zpdesc;
}
}
/*
* Allocate a zspage for the given size class
*/
static struct zspage *alloc_zspage(struct zs_pool *pool,
struct size_class *class,
gfp_t gfp)
{
int i;
struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE];
struct zspage *zspage = cache_alloc_zspage(pool, gfp);
if (!zspage)
return NULL;
zspage->magic = ZSPAGE_MAGIC;
zspage->pool = pool;
zspage->class = class->index;
zspage_lock_init(zspage);
for (i = 0; i < class->pages_per_zspage; i++) {
struct zpdesc *zpdesc;
zpdesc = alloc_zpdesc(gfp);
if (!zpdesc) {
while (--i >= 0) {
zpdesc_dec_zone_page_state(zpdescs[i]);
__zpdesc_clear_zsmalloc(zpdescs[i]);
free_zpdesc(zpdescs[i]);
}
cache_free_zspage(pool, zspage);
return NULL;
}
__zpdesc_set_zsmalloc(zpdesc);
zpdesc_inc_zone_page_state(zpdesc);
zpdescs[i] = zpdesc;
}
create_page_chain(class, zspage, zpdescs);
init_zspage(class, zspage);
return zspage;
}
static struct zspage *find_get_zspage(struct size_class *class)
{
int i;
struct zspage *zspage;
for (i = ZS_INUSE_RATIO_99; i >= ZS_INUSE_RATIO_0; i--) {
zspage = list_first_entry_or_null(&class->fullness_list[i],
struct zspage, list);
if (zspage)
break;
}
return zspage;
}
static bool can_merge(struct size_class *prev, int pages_per_zspage,
int objs_per_zspage)
{
if (prev->pages_per_zspage == pages_per_zspage &&
prev->objs_per_zspage == objs_per_zspage)
return true;
return false;
}
static bool zspage_full(struct size_class *class, struct zspage *zspage)
{
return get_zspage_inuse(zspage) == class->objs_per_zspage;
}
static bool zspage_empty(struct zspage *zspage)
{
return get_zspage_inuse(zspage) == 0;
}
/**
* zs_lookup_class_index() - Returns index of the zsmalloc &size_class
* that hold objects of the provided size.
* @pool: zsmalloc pool to use
* @size: object size
*
* Context: Any context.
*
* Return: the index of the zsmalloc &size_class that hold objects of the
* provided size.
*/
unsigned int zs_lookup_class_index(struct zs_pool *pool, unsigned int size)
{
struct size_class *class;
class = pool->size_class[get_size_class_index(size)];
return class->index;
}
EXPORT_SYMBOL_GPL(zs_lookup_class_index);
unsigned long zs_get_total_pages(struct zs_pool *pool)
{
return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);
void *zs_obj_read_begin(struct zs_pool *pool, unsigned long handle,
void *local_copy)
{
struct zspage *zspage;
struct zpdesc *zpdesc;
unsigned long obj, off;
unsigned int obj_idx;
struct size_class *class;
void *addr;
/* Guarantee we can get zspage from handle safely */
read_lock(&pool->lock);
obj = handle_to_obj(handle);
obj_to_location(obj, &zpdesc, &obj_idx);
zspage = get_zspage(zpdesc);
/* Make sure migration doesn't move any pages in this zspage */
zspage_read_lock(zspage);
read_unlock(&pool->lock);
class = zspage_class(pool, zspage);
off = offset_in_page(class->size * obj_idx);
if (off + class->size <= PAGE_SIZE) {
/* this object is contained entirely within a page */
addr = kmap_local_zpdesc(zpdesc);
addr += off;
} else {
size_t sizes[2];
/* this object spans two pages */
sizes[0] = PAGE_SIZE - off;
sizes[1] = class->size - sizes[0];
addr = local_copy;
memcpy_from_page(addr, zpdesc_page(zpdesc),
off, sizes[0]);
zpdesc = get_next_zpdesc(zpdesc);
memcpy_from_page(addr + sizes[0],
zpdesc_page(zpdesc),
0, sizes[1]);
}
if (!ZsHugePage(zspage))
addr += ZS_HANDLE_SIZE;
return addr;
}
EXPORT_SYMBOL_GPL(zs_obj_read_begin);
void zs_obj_read_end(struct zs_pool *pool, unsigned long handle,
void *handle_mem)
{
struct zspage *zspage;
struct zpdesc *zpdesc;
unsigned long obj, off;
unsigned int obj_idx;
struct size_class *class;
obj = handle_to_obj(handle);
obj_to_location(obj, &zpdesc, &obj_idx);
zspage = get_zspage(zpdesc);
class = zspage_class(pool, zspage);
off = offset_in_page(class->size * obj_idx);
if (off + class->size <= PAGE_SIZE) {
if (!ZsHugePage(zspage))
off += ZS_HANDLE_SIZE;
handle_mem -= off;
kunmap_local(handle_mem);
}
zspage_read_unlock(zspage);
}
EXPORT_SYMBOL_GPL(zs_obj_read_end);
void zs_obj_write(struct zs_pool *pool, unsigned long handle,
void *handle_mem, size_t mem_len)
{
struct zspage *zspage;
struct zpdesc *zpdesc;
unsigned long obj, off;
unsigned int obj_idx;
struct size_class *class;
/* Guarantee we can get zspage from handle safely */
read_lock(&pool->lock);
obj = handle_to_obj(handle);
obj_to_location(obj, &zpdesc, &obj_idx);
zspage = get_zspage(zpdesc);
/* Make sure migration doesn't move any pages in this zspage */
zspage_read_lock(zspage);
read_unlock(&pool->lock);
class = zspage_class(pool, zspage);
off = offset_in_page(class->size * obj_idx);
if (!ZsHugePage(zspage))
off += ZS_HANDLE_SIZE;
if (off + mem_len <= PAGE_SIZE) {
/* this object is contained entirely within a page */
void *dst = kmap_local_zpdesc(zpdesc);
memcpy(dst + off, handle_mem, mem_len);
kunmap_local(dst);
} else {
/* this object spans two pages */
size_t sizes[2];
sizes[0] = PAGE_SIZE - off;
sizes[1] = mem_len - sizes[0];
memcpy_to_page(zpdesc_page(zpdesc), off,
handle_mem, sizes[0]);
zpdesc = get_next_zpdesc(zpdesc);
memcpy_to_page(zpdesc_page(zpdesc), 0,
handle_mem + sizes[0], sizes[1]);
}
zspage_read_unlock(zspage);
}
EXPORT_SYMBOL_GPL(zs_obj_write);
/**
* zs_huge_class_size() - Returns the size (in bytes) of the first huge
* zsmalloc &size_class.
* @pool: zsmalloc pool to use
*
* The function returns the size of the first huge class - any object of equal
* or bigger size will be stored in zspage consisting of a single physical
* page.
*
* Context: Any context.
*
* Return: the size (in bytes) of the first huge zsmalloc &size_class.
*/
size_t zs_huge_class_size(struct zs_pool *pool)
{
return huge_class_size;
}
EXPORT_SYMBOL_GPL(zs_huge_class_size);
static unsigned long obj_malloc(struct zs_pool *pool,
struct zspage *zspage, unsigned long handle)
{
int i, nr_zpdesc, offset;
unsigned long obj;
struct link_free *link;
struct size_class *class;
struct zpdesc *m_zpdesc;
unsigned long m_offset;
void *vaddr;
class = pool->size_class[zspage->class];
obj = get_freeobj(zspage);
offset = obj * class->size;
nr_zpdesc = offset >> PAGE_SHIFT;
m_offset = offset_in_page(offset);
m_zpdesc = get_first_zpdesc(zspage);
for (i = 0; i < nr_zpdesc; i++)
m_zpdesc = get_next_zpdesc(m_zpdesc);
vaddr = kmap_local_zpdesc(m_zpdesc);
link = (struct link_free *)vaddr + m_offset / sizeof(*link);
set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
if (likely(!ZsHugePage(zspage)))
/* record handle in the header of allocated chunk */
link->handle = handle | OBJ_ALLOCATED_TAG;
else
zspage->first_zpdesc->handle = handle | OBJ_ALLOCATED_TAG;
kunmap_local(vaddr);
mod_zspage_inuse(zspage, 1);
obj = location_to_obj(m_zpdesc, obj);
record_obj(handle, obj);
return obj;
}
/**
* zs_malloc - Allocate block of given size from pool.
* @pool: pool to allocate from
* @size: size of block to allocate
* @gfp: gfp flags when allocating object
*
* On success, handle to the allocated object is returned,
* otherwise an ERR_PTR().
* Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
*/
unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
{
unsigned long handle;
struct size_class *class;
int newfg;
struct zspage *zspage;
if (unlikely(!size))
return (unsigned long)ERR_PTR(-EINVAL);
if (unlikely(size > ZS_MAX_ALLOC_SIZE))
return (unsigned long)ERR_PTR(-ENOSPC);
handle = cache_alloc_handle(pool, gfp);
if (!handle)
return (unsigned long)ERR_PTR(-ENOMEM);
/* extra space in chunk to keep the handle */
size += ZS_HANDLE_SIZE;
class = pool->size_class[get_size_class_index(size)];
/* class->lock effectively protects the zpage migration */
spin_lock(&class->lock);
zspage = find_get_zspage(class);
if (likely(zspage)) {
obj_malloc(pool, zspage, handle);
/* Now move the zspage to another fullness group, if required */
fix_fullness_group(class, zspage);
class_stat_add(class, ZS_OBJS_INUSE, 1);
goto out;
}
spin_unlock(&class->lock);
zspage = alloc_zspage(pool, class, gfp);
if (!zspage) {
cache_free_handle(pool, handle);
return (unsigned long)ERR_PTR(-ENOMEM);
}
spin_lock(&class->lock);
obj_malloc(pool, zspage, handle);
newfg = get_fullness_group(class, zspage);
insert_zspage(class, zspage, newfg);
atomic_long_add(class->pages_per_zspage, &pool->pages_allocated);
class_stat_add(class, ZS_OBJS_ALLOCATED, class->objs_per_zspage);
class_stat_add(class, ZS_OBJS_INUSE, 1);
/* We completely set up zspage so mark them as movable */
SetZsPageMovable(pool, zspage);
out:
spin_unlock(&class->lock);
return handle;
}
EXPORT_SYMBOL_GPL(zs_malloc);
static void obj_free(int class_size, unsigned long obj)
{
struct link_free *link;
struct zspage *zspage;
struct zpdesc *f_zpdesc;
unsigned long f_offset;
unsigned int f_objidx;
void *vaddr;
obj_to_location(obj, &f_zpdesc, &f_objidx);
f_offset = offset_in_page(class_size * f_objidx);
zspage = get_zspage(f_zpdesc);
vaddr = kmap_local_zpdesc(f_zpdesc);
link = (struct link_free *)(vaddr + f_offset);
/* Insert this object in containing zspage's freelist */
if (likely(!ZsHugePage(zspage)))
link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
else
f_zpdesc->handle = 0;
set_freeobj(zspage, f_objidx);
kunmap_local(vaddr);
mod_zspage_inuse(zspage, -1);
}
void zs_free(struct zs_pool *pool, unsigned long handle)
{
struct zspage *zspage;
struct zpdesc *f_zpdesc;
unsigned long obj;
struct size_class *class;
int fullness;
if (IS_ERR_OR_NULL((void *)handle))
return;
/*
* The pool->lock protects the race with zpage's migration
* so it's safe to get the page from handle.
*/
read_lock(&pool->lock);
obj = handle_to_obj(handle);
obj_to_zpdesc(obj, &f_zpdesc);
zspage = get_zspage(f_zpdesc);
class = zspage_class(pool, zspage);
spin_lock(&class->lock);
read_unlock(&pool->lock);
class_stat_sub(class, ZS_OBJS_INUSE, 1);
obj_free(class->size, obj);
fullness = fix_fullness_group(class, zspage);
if (fullness == ZS_INUSE_RATIO_0)
free_zspage(pool, class, zspage);
spin_unlock(&class->lock);
cache_free_handle(pool, handle);
}
EXPORT_SYMBOL_GPL(zs_free);
static void zs_object_copy(struct size_class *class, unsigned long dst,
unsigned long src)
{
struct zpdesc *s_zpdesc, *d_zpdesc;
unsigned int s_objidx, d_objidx;
unsigned long s_off, d_off;
void *s_addr, *d_addr;
int s_size, d_size, size;
int written = 0;
s_size = d_size = class->size;
obj_to_location(src, &s_zpdesc, &s_objidx);
obj_to_location(dst, &d_zpdesc, &d_objidx);
s_off = offset_in_page(class->size * s_objidx);
d_off = offset_in_page(class->size * d_objidx);
if (s_off + class->size > PAGE_SIZE)
s_size = PAGE_SIZE - s_off;
if (d_off + class->size > PAGE_SIZE)
d_size = PAGE_SIZE - d_off;
s_addr = kmap_local_zpdesc(s_zpdesc);
d_addr = kmap_local_zpdesc(d_zpdesc);
while (1) {
size = min(s_size, d_size);
memcpy(d_addr + d_off, s_addr + s_off, size);
written += size;
if (written == class->size)
break;
s_off += size;
s_size -= size;
d_off += size;
d_size -= size;
/*
* Calling kunmap_local(d_addr) is necessary. kunmap_local()
* calls must occurs in reverse order of calls to kmap_local_page().
* So, to call kunmap_local(s_addr) we should first call
* kunmap_local(d_addr). For more details see
* Documentation/mm/highmem.rst.
*/
if (s_off >= PAGE_SIZE) {
kunmap_local(d_addr);
kunmap_local(s_addr);
s_zpdesc = get_next_zpdesc(s_zpdesc);
s_addr = kmap_local_zpdesc(s_zpdesc);
d_addr = kmap_local_zpdesc(d_zpdesc);
s_size = class->size - written;
s_off = 0;
}
if (d_off >= PAGE_SIZE) {
kunmap_local(d_addr);
d_zpdesc = get_next_zpdesc(d_zpdesc);
d_addr = kmap_local_zpdesc(d_zpdesc);
d_size = class->size - written;
d_off = 0;
}
}
kunmap_local(d_addr);
kunmap_local(s_addr);
}
/*
* Find alloced object in zspage from index object and
* return handle.
*/
static unsigned long find_alloced_obj(struct size_class *class,
struct zpdesc *zpdesc, int *obj_idx)
{
unsigned int offset;
int index = *obj_idx;
unsigned long handle = 0;
void *addr = kmap_local_zpdesc(zpdesc);
offset = get_first_obj_offset(zpdesc);
offset += class->size * index;
while (offset < PAGE_SIZE) {
if (obj_allocated(zpdesc, addr + offset, &handle))
break;
offset += class->size;
index++;
}
kunmap_local(addr);
*obj_idx = index;
return handle;
}
static void migrate_zspage(struct zs_pool *pool, struct zspage *src_zspage,
struct zspage *dst_zspage)
{
unsigned long used_obj, free_obj;
unsigned long handle;
int obj_idx = 0;
struct zpdesc *s_zpdesc = get_first_zpdesc(src_zspage);
struct size_class *class = pool->size_class[src_zspage->class];
while (1) {
handle = find_alloced_obj(class, s_zpdesc, &obj_idx);
if (!handle) {
s_zpdesc = get_next_zpdesc(s_zpdesc);
if (!s_zpdesc)
break;
obj_idx = 0;
continue;
}
used_obj = handle_to_obj(handle);
free_obj = obj_malloc(pool, dst_zspage, handle);
zs_object_copy(class, free_obj, used_obj);
obj_idx++;
obj_free(class->size, used_obj);
/* Stop if there is no more space */
if (zspage_full(class, dst_zspage))
break;
/* Stop if there are no more objects to migrate */
if (zspage_empty(src_zspage))
break;
}
}
static struct zspage *isolate_src_zspage(struct size_class *class)
{
struct zspage *zspage;
int fg;
for (fg = ZS_INUSE_RATIO_10; fg <= ZS_INUSE_RATIO_99; fg++) {
zspage = list_first_entry_or_null(&class->fullness_list[fg],
struct zspage, list);
if (zspage) {
remove_zspage(class, zspage);
return zspage;
}
}
return zspage;
}
static struct zspage *isolate_dst_zspage(struct size_class *class)
{
struct zspage *zspage;
int fg;
for (fg = ZS_INUSE_RATIO_99; fg >= ZS_INUSE_RATIO_10; fg--) {
zspage = list_first_entry_or_null(&class->fullness_list[fg],
struct zspage, list);
if (zspage) {
remove_zspage(class, zspage);
return zspage;
}
}
return zspage;
}
/*
* putback_zspage - add @zspage into right class's fullness list
* @class: destination class
* @zspage: target page
*
* Return @zspage's fullness status
*/
static int putback_zspage(struct size_class *class, struct zspage *zspage)
{
int fullness;
fullness = get_fullness_group(class, zspage);
insert_zspage(class, zspage, fullness);
return fullness;
}
#ifdef CONFIG_COMPACTION
/*
* To prevent zspage destroy during migration, zspage freeing should
* hold locks of all pages in the zspage.
*/
static void lock_zspage(struct zspage *zspage)
{
struct zpdesc *curr_zpdesc, *zpdesc;
/*
* Pages we haven't locked yet can be migrated off the list while we're
* trying to lock them, so we need to be careful and only attempt to
* lock each page under zspage_read_lock(). Otherwise, the page we lock
* may no longer belong to the zspage. This means that we may wait for
* the wrong page to unlock, so we must take a reference to the page
* prior to waiting for it to unlock outside zspage_read_lock().
*/
while (1) {
zspage_read_lock(zspage);
zpdesc = get_first_zpdesc(zspage);
if (zpdesc_trylock(zpdesc))
break;
zpdesc_get(zpdesc);
zspage_read_unlock(zspage);
zpdesc_wait_locked(zpdesc);
zpdesc_put(zpdesc);
}
curr_zpdesc = zpdesc;
while ((zpdesc = get_next_zpdesc(curr_zpdesc))) {
if (zpdesc_trylock(zpdesc)) {
curr_zpdesc = zpdesc;
} else {
zpdesc_get(zpdesc);
zspage_read_unlock(zspage);
zpdesc_wait_locked(zpdesc);
zpdesc_put(zpdesc);
zspage_read_lock(zspage);
}
}
zspage_read_unlock(zspage);
}
#endif /* CONFIG_COMPACTION */
#ifdef CONFIG_COMPACTION
static const struct movable_operations zsmalloc_mops;
static void replace_sub_page(struct size_class *class, struct zspage *zspage,
struct zpdesc *newzpdesc, struct zpdesc *oldzpdesc)
{
struct zpdesc *zpdesc;
struct zpdesc *zpdescs[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
unsigned int first_obj_offset;
int idx = 0;
zpdesc = get_first_zpdesc(zspage);
do {
if (zpdesc == oldzpdesc)
zpdescs[idx] = newzpdesc;
else
zpdescs[idx] = zpdesc;
idx++;
} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
create_page_chain(class, zspage, zpdescs);
first_obj_offset = get_first_obj_offset(oldzpdesc);
set_first_obj_offset(newzpdesc, first_obj_offset);
if (unlikely(ZsHugePage(zspage)))
newzpdesc->handle = oldzpdesc->handle;
__zpdesc_set_movable(newzpdesc, &zsmalloc_mops);
}
static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
{
/*
* Page is locked so zspage couldn't be destroyed. For detail, look at
* lock_zspage in free_zspage.
*/
VM_BUG_ON_PAGE(PageIsolated(page), page);
return true;
}
static int zs_page_migrate(struct page *newpage, struct page *page,
enum migrate_mode mode)
{
struct zs_pool *pool;
struct size_class *class;
struct zspage *zspage;
struct zpdesc *dummy;
struct zpdesc *newzpdesc = page_zpdesc(newpage);
struct zpdesc *zpdesc = page_zpdesc(page);
void *s_addr, *d_addr, *addr;
unsigned int offset;
unsigned long handle;
unsigned long old_obj, new_obj;
unsigned int obj_idx;
VM_BUG_ON_PAGE(!zpdesc_is_isolated(zpdesc), zpdesc_page(zpdesc));
/* The page is locked, so this pointer must remain valid */
zspage = get_zspage(zpdesc);
pool = zspage->pool;
/*
* The pool migrate_lock protects the race between zpage migration
* and zs_free.
*/
write_lock(&pool->lock);
class = zspage_class(pool, zspage);
/*
* the class lock protects zpage alloc/free in the zspage.
*/
spin_lock(&class->lock);
/* the zspage write_lock protects zpage access via zs_obj_read/write() */
if (!zspage_write_trylock(zspage)) {
spin_unlock(&class->lock);
write_unlock(&pool->lock);
return -EINVAL;
}
/* We're committed, tell the world that this is a Zsmalloc page. */
__zpdesc_set_zsmalloc(newzpdesc);
offset = get_first_obj_offset(zpdesc);
s_addr = kmap_local_zpdesc(zpdesc);
/*
* Here, any user cannot access all objects in the zspage so let's move.
*/
d_addr = kmap_local_zpdesc(newzpdesc);
copy_page(d_addr, s_addr);
kunmap_local(d_addr);
for (addr = s_addr + offset; addr < s_addr + PAGE_SIZE;
addr += class->size) {
if (obj_allocated(zpdesc, addr, &handle)) {
old_obj = handle_to_obj(handle);
obj_to_location(old_obj, &dummy, &obj_idx);
new_obj = (unsigned long)location_to_obj(newzpdesc, obj_idx);
record_obj(handle, new_obj);
}
}
kunmap_local(s_addr);
replace_sub_page(class, zspage, newzpdesc, zpdesc);
/*
* Since we complete the data copy and set up new zspage structure,
* it's okay to release migration_lock.
*/
write_unlock(&pool->lock);
spin_unlock(&class->lock);
zspage_write_unlock(zspage);
zpdesc_get(newzpdesc);
if (zpdesc_zone(newzpdesc) != zpdesc_zone(zpdesc)) {
zpdesc_dec_zone_page_state(zpdesc);
zpdesc_inc_zone_page_state(newzpdesc);
}
reset_zpdesc(zpdesc);
zpdesc_put(zpdesc);
return MIGRATEPAGE_SUCCESS;
}
static void zs_page_putback(struct page *page)
{
VM_BUG_ON_PAGE(!PageIsolated(page), page);
}
static const struct movable_operations zsmalloc_mops = {
.isolate_page = zs_page_isolate,
.migrate_page = zs_page_migrate,
.putback_page = zs_page_putback,
};
/*
* Caller should hold page_lock of all pages in the zspage
* In here, we cannot use zspage meta data.
*/
static void async_free_zspage(struct work_struct *work)
{
int i;
struct size_class *class;
struct zspage *zspage, *tmp;
LIST_HEAD(free_pages);
struct zs_pool *pool = container_of(work, struct zs_pool,
free_work);
for (i = 0; i < ZS_SIZE_CLASSES; i++) {
class = pool->size_class[i];
if (class->index != i)
continue;
spin_lock(&class->lock);
list_splice_init(&class->fullness_list[ZS_INUSE_RATIO_0],
&free_pages);
spin_unlock(&class->lock);
}
list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
list_del(&zspage->list);
lock_zspage(zspage);
class = zspage_class(pool, zspage);
spin_lock(&class->lock);
class_stat_sub(class, ZS_INUSE_RATIO_0, 1);
__free_zspage(pool, class, zspage);
spin_unlock(&class->lock);
}
};
static void kick_deferred_free(struct zs_pool *pool)
{
schedule_work(&pool->free_work);
}
static void zs_flush_migration(struct zs_pool *pool)
{
flush_work(&pool->free_work);
}
static void init_deferred_free(struct zs_pool *pool)
{
INIT_WORK(&pool->free_work, async_free_zspage);
}
static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
{
struct zpdesc *zpdesc = get_first_zpdesc(zspage);
do {
WARN_ON(!zpdesc_trylock(zpdesc));
__zpdesc_set_movable(zpdesc, &zsmalloc_mops);
zpdesc_unlock(zpdesc);
} while ((zpdesc = get_next_zpdesc(zpdesc)) != NULL);
}
#else
static inline void zs_flush_migration(struct zs_pool *pool) { }
#endif
/*
*
* Based on the number of unused allocated objects calculate
* and return the number of pages that we can free.
*/
static unsigned long zs_can_compact(struct size_class *class)
{
unsigned long obj_wasted;
unsigned long obj_allocated = class_stat_read(class, ZS_OBJS_ALLOCATED);
unsigned long obj_used = class_stat_read(class, ZS_OBJS_INUSE);
if (obj_allocated <= obj_used)
return 0;
obj_wasted = obj_allocated - obj_used;
obj_wasted /= class->objs_per_zspage;
return obj_wasted * class->pages_per_zspage;
}
static unsigned long __zs_compact(struct zs_pool *pool,
struct size_class *class)
{
struct zspage *src_zspage = NULL;
struct zspage *dst_zspage = NULL;
unsigned long pages_freed = 0;
/*
* protect the race between zpage migration and zs_free
* as well as zpage allocation/free
*/
write_lock(&pool->lock);
spin_lock(&class->lock);
while (zs_can_compact(class)) {
int fg;
if (!dst_zspage) {
dst_zspage = isolate_dst_zspage(class);
if (!dst_zspage)
break;
}
src_zspage = isolate_src_zspage(class);
if (!src_zspage)
break;
if (!zspage_write_trylock(src_zspage))
break;
migrate_zspage(pool, src_zspage, dst_zspage);
zspage_write_unlock(src_zspage);
fg = putback_zspage(class, src_zspage);
if (fg == ZS_INUSE_RATIO_0) {
free_zspage(pool, class, src_zspage);
pages_freed += class->pages_per_zspage;
}
src_zspage = NULL;
if (get_fullness_group(class, dst_zspage) == ZS_INUSE_RATIO_100
|| rwlock_is_contended(&pool->lock)) {
putback_zspage(class, dst_zspage);
dst_zspage = NULL;
spin_unlock(&class->lock);
write_unlock(&pool->lock);
cond_resched();
write_lock(&pool->lock);
spin_lock(&class->lock);
}
}
if (src_zspage)
putback_zspage(class, src_zspage);
if (dst_zspage)
putback_zspage(class, dst_zspage);
spin_unlock(&class->lock);
write_unlock(&pool->lock);
return pages_freed;
}
unsigned long zs_compact(struct zs_pool *pool)
{
int i;
struct size_class *class;
unsigned long pages_freed = 0;
/*
* Pool compaction is performed under pool->lock so it is basically
* single-threaded. Having more than one thread in __zs_compact()
* will increase pool->lock contention, which will impact other
* zsmalloc operations that need pool->lock.
*/
if (atomic_xchg(&pool->compaction_in_progress, 1))
return 0;
for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
class = pool->size_class[i];
if (class->index != i)
continue;
pages_freed += __zs_compact(pool, class);
}
atomic_long_add(pages_freed, &pool->stats.pages_compacted);
atomic_set(&pool->compaction_in_progress, 0);
return pages_freed;
}
EXPORT_SYMBOL_GPL(zs_compact);
void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
{
memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
}
EXPORT_SYMBOL_GPL(zs_pool_stats);
static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
struct shrink_control *sc)
{
unsigned long pages_freed;
struct zs_pool *pool = shrinker->private_data;
/*
* Compact classes and calculate compaction delta.
* Can run concurrently with a manually triggered
* (by user) compaction.
*/
pages_freed = zs_compact(pool);
return pages_freed ? pages_freed : SHRINK_STOP;
}
static unsigned long zs_shrinker_count(struct shrinker *shrinker,
struct shrink_control *sc)
{
int i;
struct size_class *class;
unsigned long pages_to_free = 0;
struct zs_pool *pool = shrinker->private_data;
for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
class = pool->size_class[i];
if (class->index != i)
continue;
pages_to_free += zs_can_compact(class);
}
return pages_to_free;
}
static void zs_unregister_shrinker(struct zs_pool *pool)
{
shrinker_free(pool->shrinker);
}
static int zs_register_shrinker(struct zs_pool *pool)
{
pool->shrinker = shrinker_alloc(0, "mm-zspool:%s", pool->name);
if (!pool->shrinker)
return -ENOMEM;
pool->shrinker->scan_objects = zs_shrinker_scan;
pool->shrinker->count_objects = zs_shrinker_count;
pool->shrinker->batch = 0;
pool->shrinker->private_data = pool;
shrinker_register(pool->shrinker);
return 0;
}
static int calculate_zspage_chain_size(int class_size)
{
int i, min_waste = INT_MAX;
int chain_size = 1;
if (is_power_of_2(class_size))
return chain_size;
for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
int waste;
waste = (i * PAGE_SIZE) % class_size;
if (waste < min_waste) {
min_waste = waste;
chain_size = i;
}
}
return chain_size;
}
/**
* zs_create_pool - Creates an allocation pool to work from.
* @name: pool name to be created
*
* This function must be called before anything when using
* the zsmalloc allocator.
*
* On success, a pointer to the newly created pool is returned,
* otherwise NULL.
*/
struct zs_pool *zs_create_pool(const char *name)
{
int i;
struct zs_pool *pool;
struct size_class *prev_class = NULL;
pool = kzalloc(sizeof(*pool), GFP_KERNEL);
if (!pool)
return NULL;
init_deferred_free(pool);
rwlock_init(&pool->lock);
atomic_set(&pool->compaction_in_progress, 0);
pool->name = kstrdup(name, GFP_KERNEL);
if (!pool->name)
goto err;
if (create_cache(pool))
goto err;
/*
* Iterate reversely, because, size of size_class that we want to use
* for merging should be larger or equal to current size.
*/
for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
int size;
int pages_per_zspage;
int objs_per_zspage;
struct size_class *class;
int fullness;
size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
if (size > ZS_MAX_ALLOC_SIZE)
size = ZS_MAX_ALLOC_SIZE;
pages_per_zspage = calculate_zspage_chain_size(size);
objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
/*
* We iterate from biggest down to smallest classes,
* so huge_class_size holds the size of the first huge
* class. Any object bigger than or equal to that will
* endup in the huge class.
*/
if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
!huge_class_size) {
huge_class_size = size;
/*
* The object uses ZS_HANDLE_SIZE bytes to store the
* handle. We need to subtract it, because zs_malloc()
* unconditionally adds handle size before it performs
* size class search - so object may be smaller than
* huge class size, yet it still can end up in the huge
* class because it grows by ZS_HANDLE_SIZE extra bytes
* right before class lookup.
*/
huge_class_size -= (ZS_HANDLE_SIZE - 1);
}
/*
* size_class is used for normal zsmalloc operation such
* as alloc/free for that size. Although it is natural that we
* have one size_class for each size, there is a chance that we
* can get more memory utilization if we use one size_class for
* many different sizes whose size_class have same
* characteristics. So, we makes size_class point to
* previous size_class if possible.
*/
if (prev_class) {
if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
pool->size_class[i] = prev_class;
continue;
}
}
class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
if (!class)
goto err;
class->size = size;
class->index = i;
class->pages_per_zspage = pages_per_zspage;
class->objs_per_zspage = objs_per_zspage;
spin_lock_init(&class->lock);
pool->size_class[i] = class;
fullness = ZS_INUSE_RATIO_0;
while (fullness < NR_FULLNESS_GROUPS) {
INIT_LIST_HEAD(&class->fullness_list[fullness]);
fullness++;
}
prev_class = class;
}
/* debug only, don't abort if it fails */
zs_pool_stat_create(pool, name);
/*
* Not critical since shrinker is only used to trigger internal
* defragmentation of the pool which is pretty optional thing. If
* registration fails we still can use the pool normally and user can
* trigger compaction manually. Thus, ignore return code.
*/
zs_register_shrinker(pool);
return pool;
err:
zs_destroy_pool(pool);
return NULL;
}
EXPORT_SYMBOL_GPL(zs_create_pool);
void zs_destroy_pool(struct zs_pool *pool)
{
int i;
zs_unregister_shrinker(pool);
zs_flush_migration(pool);
zs_pool_stat_destroy(pool);
for (i = 0; i < ZS_SIZE_CLASSES; i++) {
int fg;
struct size_class *class = pool->size_class[i];
if (!class)
continue;
if (class->index != i)
continue;
for (fg = ZS_INUSE_RATIO_0; fg < NR_FULLNESS_GROUPS; fg++) {
if (list_empty(&class->fullness_list[fg]))
continue;
pr_err("Class-%d fullness group %d is not empty\n",
class->size, fg);
}
kfree(class);
}
destroy_cache(pool);
kfree(pool->name);
kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
static int __init zs_init(void)
{
#ifdef CONFIG_ZPOOL
zpool_register_driver(&zs_zpool_driver);
#endif
zs_stat_init();
return 0;
}
static void __exit zs_exit(void)
{
#ifdef CONFIG_ZPOOL
zpool_unregister_driver(&zs_zpool_driver);
#endif
zs_stat_exit();
}
module_init(zs_init);
module_exit(zs_exit);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
MODULE_DESCRIPTION("zsmalloc memory allocator");