linux-mainline/drivers/net/ethernet/chelsio/cxgb4/cxgb4_tc_flower.c
Herat Ramani 2ef813b8f4 cxgb4: handle 4-tuple PEDIT to NAT mode translation
The 4-tuple NAT offload via PEDIT always overwrites all the 4-tuple
fields even if they had not been explicitly enabled. If any fields in
the 4-tuple are not enabled, then the hardware overwrites the
disabled fields with zeros, instead of ignoring them.

So, add a parser that can translate the enabled 4-tuple PEDIT fields
to one of the NAT mode combinations supported by the hardware and
hence avoid overwriting disabled fields to 0. Any rule with
unsupported NAT mode combination is rejected.

Signed-off-by: Herat Ramani <herat@chelsio.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2020-10-14 18:20:37 -07:00

1147 lines
30 KiB
C

/*
* This file is part of the Chelsio T4/T5/T6 Ethernet driver for Linux.
*
* Copyright (c) 2017 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <net/tc_act/tc_mirred.h>
#include <net/tc_act/tc_pedit.h>
#include <net/tc_act/tc_gact.h>
#include <net/tc_act/tc_vlan.h>
#include "cxgb4.h"
#include "cxgb4_filter.h"
#include "cxgb4_tc_flower.h"
#define STATS_CHECK_PERIOD (HZ / 2)
static struct ch_tc_pedit_fields pedits[] = {
PEDIT_FIELDS(ETH_, DMAC_31_0, 4, dmac, 0),
PEDIT_FIELDS(ETH_, DMAC_47_32, 2, dmac, 4),
PEDIT_FIELDS(ETH_, SMAC_15_0, 2, smac, 0),
PEDIT_FIELDS(ETH_, SMAC_47_16, 4, smac, 2),
PEDIT_FIELDS(IP4_, SRC, 4, nat_fip, 0),
PEDIT_FIELDS(IP4_, DST, 4, nat_lip, 0),
PEDIT_FIELDS(IP6_, SRC_31_0, 4, nat_fip, 0),
PEDIT_FIELDS(IP6_, SRC_63_32, 4, nat_fip, 4),
PEDIT_FIELDS(IP6_, SRC_95_64, 4, nat_fip, 8),
PEDIT_FIELDS(IP6_, SRC_127_96, 4, nat_fip, 12),
PEDIT_FIELDS(IP6_, DST_31_0, 4, nat_lip, 0),
PEDIT_FIELDS(IP6_, DST_63_32, 4, nat_lip, 4),
PEDIT_FIELDS(IP6_, DST_95_64, 4, nat_lip, 8),
PEDIT_FIELDS(IP6_, DST_127_96, 4, nat_lip, 12),
};
static const struct cxgb4_natmode_config cxgb4_natmode_config_array[] = {
/* Default supported NAT modes */
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_NONE,
.natmode = NAT_MODE_NONE,
},
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_DIP,
.natmode = NAT_MODE_DIP,
},
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_DIP | CXGB4_ACTION_NATMODE_DPORT,
.natmode = NAT_MODE_DIP_DP,
},
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_DIP | CXGB4_ACTION_NATMODE_DPORT |
CXGB4_ACTION_NATMODE_SIP,
.natmode = NAT_MODE_DIP_DP_SIP,
},
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_DIP | CXGB4_ACTION_NATMODE_DPORT |
CXGB4_ACTION_NATMODE_SPORT,
.natmode = NAT_MODE_DIP_DP_SP,
},
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_SIP | CXGB4_ACTION_NATMODE_SPORT,
.natmode = NAT_MODE_SIP_SP,
},
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_DIP | CXGB4_ACTION_NATMODE_SIP |
CXGB4_ACTION_NATMODE_SPORT,
.natmode = NAT_MODE_DIP_SIP_SP,
},
{
.chip = CHELSIO_T5,
.flags = CXGB4_ACTION_NATMODE_DIP | CXGB4_ACTION_NATMODE_SIP |
CXGB4_ACTION_NATMODE_DPORT |
CXGB4_ACTION_NATMODE_SPORT,
.natmode = NAT_MODE_ALL,
},
/* T6+ can ignore L4 ports when they're disabled. */
{
.chip = CHELSIO_T6,
.flags = CXGB4_ACTION_NATMODE_SIP,
.natmode = NAT_MODE_SIP_SP,
},
{
.chip = CHELSIO_T6,
.flags = CXGB4_ACTION_NATMODE_DIP | CXGB4_ACTION_NATMODE_SPORT,
.natmode = NAT_MODE_DIP_DP_SP,
},
{
.chip = CHELSIO_T6,
.flags = CXGB4_ACTION_NATMODE_DIP | CXGB4_ACTION_NATMODE_SIP,
.natmode = NAT_MODE_ALL,
},
};
static void cxgb4_action_natmode_tweak(struct ch_filter_specification *fs,
u8 natmode_flags)
{
u8 i = 0;
/* Translate the enabled NAT 4-tuple fields to one of the
* hardware supported NAT mode configurations. This ensures
* that we pick a valid combination, where the disabled fields
* do not get overwritten to 0.
*/
for (i = 0; i < ARRAY_SIZE(cxgb4_natmode_config_array); i++) {
if (cxgb4_natmode_config_array[i].flags == natmode_flags) {
fs->nat_mode = cxgb4_natmode_config_array[i].natmode;
return;
}
}
}
static struct ch_tc_flower_entry *allocate_flower_entry(void)
{
struct ch_tc_flower_entry *new = kzalloc(sizeof(*new), GFP_KERNEL);
if (new)
spin_lock_init(&new->lock);
return new;
}
/* Must be called with either RTNL or rcu_read_lock */
static struct ch_tc_flower_entry *ch_flower_lookup(struct adapter *adap,
unsigned long flower_cookie)
{
return rhashtable_lookup_fast(&adap->flower_tbl, &flower_cookie,
adap->flower_ht_params);
}
static void cxgb4_process_flow_match(struct net_device *dev,
struct flow_rule *rule,
struct ch_filter_specification *fs)
{
u16 addr_type = 0;
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
struct flow_match_control match;
flow_rule_match_control(rule, &match);
addr_type = match.key->addr_type;
} else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
} else if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
u16 ethtype_key, ethtype_mask;
flow_rule_match_basic(rule, &match);
ethtype_key = ntohs(match.key->n_proto);
ethtype_mask = ntohs(match.mask->n_proto);
if (ethtype_key == ETH_P_ALL) {
ethtype_key = 0;
ethtype_mask = 0;
}
if (ethtype_key == ETH_P_IPV6)
fs->type = 1;
fs->val.ethtype = ethtype_key;
fs->mask.ethtype = ethtype_mask;
fs->val.proto = match.key->ip_proto;
fs->mask.proto = match.mask->ip_proto;
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
struct flow_match_ipv4_addrs match;
flow_rule_match_ipv4_addrs(rule, &match);
fs->type = 0;
memcpy(&fs->val.lip[0], &match.key->dst, sizeof(match.key->dst));
memcpy(&fs->val.fip[0], &match.key->src, sizeof(match.key->src));
memcpy(&fs->mask.lip[0], &match.mask->dst, sizeof(match.mask->dst));
memcpy(&fs->mask.fip[0], &match.mask->src, sizeof(match.mask->src));
/* also initialize nat_lip/fip to same values */
memcpy(&fs->nat_lip[0], &match.key->dst, sizeof(match.key->dst));
memcpy(&fs->nat_fip[0], &match.key->src, sizeof(match.key->src));
}
if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
struct flow_match_ipv6_addrs match;
flow_rule_match_ipv6_addrs(rule, &match);
fs->type = 1;
memcpy(&fs->val.lip[0], match.key->dst.s6_addr,
sizeof(match.key->dst));
memcpy(&fs->val.fip[0], match.key->src.s6_addr,
sizeof(match.key->src));
memcpy(&fs->mask.lip[0], match.mask->dst.s6_addr,
sizeof(match.mask->dst));
memcpy(&fs->mask.fip[0], match.mask->src.s6_addr,
sizeof(match.mask->src));
/* also initialize nat_lip/fip to same values */
memcpy(&fs->nat_lip[0], match.key->dst.s6_addr,
sizeof(match.key->dst));
memcpy(&fs->nat_fip[0], match.key->src.s6_addr,
sizeof(match.key->src));
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
struct flow_match_ports match;
flow_rule_match_ports(rule, &match);
fs->val.lport = be16_to_cpu(match.key->dst);
fs->mask.lport = be16_to_cpu(match.mask->dst);
fs->val.fport = be16_to_cpu(match.key->src);
fs->mask.fport = be16_to_cpu(match.mask->src);
/* also initialize nat_lport/fport to same values */
fs->nat_lport = fs->val.lport;
fs->nat_fport = fs->val.fport;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IP)) {
struct flow_match_ip match;
flow_rule_match_ip(rule, &match);
fs->val.tos = match.key->tos;
fs->mask.tos = match.mask->tos;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
struct flow_match_enc_keyid match;
flow_rule_match_enc_keyid(rule, &match);
fs->val.vni = be32_to_cpu(match.key->keyid);
fs->mask.vni = be32_to_cpu(match.mask->keyid);
if (fs->mask.vni) {
fs->val.encap_vld = 1;
fs->mask.encap_vld = 1;
}
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
u16 vlan_tci, vlan_tci_mask;
flow_rule_match_vlan(rule, &match);
vlan_tci = match.key->vlan_id | (match.key->vlan_priority <<
VLAN_PRIO_SHIFT);
vlan_tci_mask = match.mask->vlan_id | (match.mask->vlan_priority <<
VLAN_PRIO_SHIFT);
fs->val.ivlan = vlan_tci;
fs->mask.ivlan = vlan_tci_mask;
fs->val.ivlan_vld = 1;
fs->mask.ivlan_vld = 1;
/* Chelsio adapters use ivlan_vld bit to match vlan packets
* as 802.1Q. Also, when vlan tag is present in packets,
* ethtype match is used then to match on ethtype of inner
* header ie. the header following the vlan header.
* So, set the ivlan_vld based on ethtype info supplied by
* TC for vlan packets if its 802.1Q. And then reset the
* ethtype value else, hw will try to match the supplied
* ethtype value with ethtype of inner header.
*/
if (fs->val.ethtype == ETH_P_8021Q) {
fs->val.ethtype = 0;
fs->mask.ethtype = 0;
}
}
/* Match only packets coming from the ingress port where this
* filter will be created.
*/
fs->val.iport = netdev2pinfo(dev)->port_id;
fs->mask.iport = ~0;
}
static int cxgb4_validate_flow_match(struct net_device *dev,
struct flow_rule *rule)
{
struct flow_dissector *dissector = rule->match.dissector;
u16 ethtype_mask = 0;
u16 ethtype_key = 0;
if (dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
BIT(FLOW_DISSECTOR_KEY_PORTS) |
BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) |
BIT(FLOW_DISSECTOR_KEY_VLAN) |
BIT(FLOW_DISSECTOR_KEY_IP))) {
netdev_warn(dev, "Unsupported key used: 0x%x\n",
dissector->used_keys);
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
struct flow_match_basic match;
flow_rule_match_basic(rule, &match);
ethtype_key = ntohs(match.key->n_proto);
ethtype_mask = ntohs(match.mask->n_proto);
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IP)) {
u16 eth_ip_type = ethtype_key & ethtype_mask;
struct flow_match_ip match;
if (eth_ip_type != ETH_P_IP && eth_ip_type != ETH_P_IPV6) {
netdev_err(dev, "IP Key supported only with IPv4/v6");
return -EINVAL;
}
flow_rule_match_ip(rule, &match);
if (match.mask->ttl) {
netdev_warn(dev, "ttl match unsupported for offload");
return -EOPNOTSUPP;
}
}
return 0;
}
static void offload_pedit(struct ch_filter_specification *fs, u32 val, u32 mask,
u8 field)
{
u32 set_val = val & ~mask;
u32 offset = 0;
u8 size = 1;
int i;
for (i = 0; i < ARRAY_SIZE(pedits); i++) {
if (pedits[i].field == field) {
offset = pedits[i].offset;
size = pedits[i].size;
break;
}
}
memcpy((u8 *)fs + offset, &set_val, size);
}
static void process_pedit_field(struct ch_filter_specification *fs, u32 val,
u32 mask, u32 offset, u8 htype,
u8 *natmode_flags)
{
switch (htype) {
case FLOW_ACT_MANGLE_HDR_TYPE_ETH:
switch (offset) {
case PEDIT_ETH_DMAC_31_0:
fs->newdmac = 1;
offload_pedit(fs, val, mask, ETH_DMAC_31_0);
break;
case PEDIT_ETH_DMAC_47_32_SMAC_15_0:
if (~mask & PEDIT_ETH_DMAC_MASK)
offload_pedit(fs, val, mask, ETH_DMAC_47_32);
else
offload_pedit(fs, val >> 16, mask >> 16,
ETH_SMAC_15_0);
break;
case PEDIT_ETH_SMAC_47_16:
fs->newsmac = 1;
offload_pedit(fs, val, mask, ETH_SMAC_47_16);
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_IP4:
switch (offset) {
case PEDIT_IP4_SRC:
offload_pedit(fs, val, mask, IP4_SRC);
*natmode_flags |= CXGB4_ACTION_NATMODE_SIP;
break;
case PEDIT_IP4_DST:
offload_pedit(fs, val, mask, IP4_DST);
*natmode_flags |= CXGB4_ACTION_NATMODE_DIP;
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_IP6:
switch (offset) {
case PEDIT_IP6_SRC_31_0:
offload_pedit(fs, val, mask, IP6_SRC_31_0);
*natmode_flags |= CXGB4_ACTION_NATMODE_SIP;
break;
case PEDIT_IP6_SRC_63_32:
offload_pedit(fs, val, mask, IP6_SRC_63_32);
*natmode_flags |= CXGB4_ACTION_NATMODE_SIP;
break;
case PEDIT_IP6_SRC_95_64:
offload_pedit(fs, val, mask, IP6_SRC_95_64);
*natmode_flags |= CXGB4_ACTION_NATMODE_SIP;
break;
case PEDIT_IP6_SRC_127_96:
offload_pedit(fs, val, mask, IP6_SRC_127_96);
*natmode_flags |= CXGB4_ACTION_NATMODE_SIP;
break;
case PEDIT_IP6_DST_31_0:
offload_pedit(fs, val, mask, IP6_DST_31_0);
*natmode_flags |= CXGB4_ACTION_NATMODE_DIP;
break;
case PEDIT_IP6_DST_63_32:
offload_pedit(fs, val, mask, IP6_DST_63_32);
*natmode_flags |= CXGB4_ACTION_NATMODE_DIP;
break;
case PEDIT_IP6_DST_95_64:
offload_pedit(fs, val, mask, IP6_DST_95_64);
*natmode_flags |= CXGB4_ACTION_NATMODE_DIP;
break;
case PEDIT_IP6_DST_127_96:
offload_pedit(fs, val, mask, IP6_DST_127_96);
*natmode_flags |= CXGB4_ACTION_NATMODE_DIP;
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_TCP:
switch (offset) {
case PEDIT_TCP_SPORT_DPORT:
if (~mask & PEDIT_TCP_UDP_SPORT_MASK) {
fs->nat_fport = val;
*natmode_flags |= CXGB4_ACTION_NATMODE_SPORT;
} else {
fs->nat_lport = val >> 16;
*natmode_flags |= CXGB4_ACTION_NATMODE_DPORT;
}
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_UDP:
switch (offset) {
case PEDIT_UDP_SPORT_DPORT:
if (~mask & PEDIT_TCP_UDP_SPORT_MASK) {
fs->nat_fport = val;
*natmode_flags |= CXGB4_ACTION_NATMODE_SPORT;
} else {
fs->nat_lport = val >> 16;
*natmode_flags |= CXGB4_ACTION_NATMODE_DPORT;
}
}
break;
}
}
static int cxgb4_action_natmode_validate(struct adapter *adap, u8 natmode_flags,
struct netlink_ext_ack *extack)
{
u8 i = 0;
/* Extract the NAT mode to enable based on what 4-tuple fields
* are enabled to be overwritten. This ensures that the
* disabled fields don't get overwritten to 0.
*/
for (i = 0; i < ARRAY_SIZE(cxgb4_natmode_config_array); i++) {
const struct cxgb4_natmode_config *c;
c = &cxgb4_natmode_config_array[i];
if (CHELSIO_CHIP_VERSION(adap->params.chip) >= c->chip &&
natmode_flags == c->flags)
return 0;
}
NL_SET_ERR_MSG_MOD(extack, "Unsupported NAT mode 4-tuple combination");
return -EOPNOTSUPP;
}
void cxgb4_process_flow_actions(struct net_device *in,
struct flow_action *actions,
struct ch_filter_specification *fs)
{
struct flow_action_entry *act;
u8 natmode_flags = 0;
int i;
flow_action_for_each(i, act, actions) {
switch (act->id) {
case FLOW_ACTION_ACCEPT:
fs->action = FILTER_PASS;
break;
case FLOW_ACTION_DROP:
fs->action = FILTER_DROP;
break;
case FLOW_ACTION_MIRRED:
case FLOW_ACTION_REDIRECT: {
struct net_device *out = act->dev;
struct port_info *pi = netdev_priv(out);
fs->action = FILTER_SWITCH;
fs->eport = pi->port_id;
}
break;
case FLOW_ACTION_VLAN_POP:
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_MANGLE: {
u8 prio = act->vlan.prio;
u16 vid = act->vlan.vid;
u16 vlan_tci = (prio << VLAN_PRIO_SHIFT) | vid;
switch (act->id) {
case FLOW_ACTION_VLAN_POP:
fs->newvlan |= VLAN_REMOVE;
break;
case FLOW_ACTION_VLAN_PUSH:
fs->newvlan |= VLAN_INSERT;
fs->vlan = vlan_tci;
break;
case FLOW_ACTION_VLAN_MANGLE:
fs->newvlan |= VLAN_REWRITE;
fs->vlan = vlan_tci;
break;
default:
break;
}
}
break;
case FLOW_ACTION_MANGLE: {
u32 mask, val, offset;
u8 htype;
htype = act->mangle.htype;
mask = act->mangle.mask;
val = act->mangle.val;
offset = act->mangle.offset;
process_pedit_field(fs, val, mask, offset, htype,
&natmode_flags);
}
break;
case FLOW_ACTION_QUEUE:
fs->action = FILTER_PASS;
fs->dirsteer = 1;
fs->iq = act->queue.index;
break;
default:
break;
}
}
if (natmode_flags)
cxgb4_action_natmode_tweak(fs, natmode_flags);
}
static bool valid_l4_mask(u32 mask)
{
u16 hi, lo;
/* Either the upper 16-bits (SPORT) OR the lower
* 16-bits (DPORT) can be set, but NOT BOTH.
*/
hi = (mask >> 16) & 0xFFFF;
lo = mask & 0xFFFF;
return hi && lo ? false : true;
}
static bool valid_pedit_action(struct net_device *dev,
const struct flow_action_entry *act,
u8 *natmode_flags)
{
u32 mask, offset;
u8 htype;
htype = act->mangle.htype;
mask = act->mangle.mask;
offset = act->mangle.offset;
switch (htype) {
case FLOW_ACT_MANGLE_HDR_TYPE_ETH:
switch (offset) {
case PEDIT_ETH_DMAC_31_0:
case PEDIT_ETH_DMAC_47_32_SMAC_15_0:
case PEDIT_ETH_SMAC_47_16:
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_IP4:
switch (offset) {
case PEDIT_IP4_SRC:
*natmode_flags |= CXGB4_ACTION_NATMODE_SIP;
break;
case PEDIT_IP4_DST:
*natmode_flags |= CXGB4_ACTION_NATMODE_DIP;
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_IP6:
switch (offset) {
case PEDIT_IP6_SRC_31_0:
case PEDIT_IP6_SRC_63_32:
case PEDIT_IP6_SRC_95_64:
case PEDIT_IP6_SRC_127_96:
*natmode_flags |= CXGB4_ACTION_NATMODE_SIP;
break;
case PEDIT_IP6_DST_31_0:
case PEDIT_IP6_DST_63_32:
case PEDIT_IP6_DST_95_64:
case PEDIT_IP6_DST_127_96:
*natmode_flags |= CXGB4_ACTION_NATMODE_DIP;
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_TCP:
switch (offset) {
case PEDIT_TCP_SPORT_DPORT:
if (!valid_l4_mask(~mask)) {
netdev_err(dev, "%s: Unsupported mask for TCP L4 ports\n",
__func__);
return false;
}
if (~mask & PEDIT_TCP_UDP_SPORT_MASK)
*natmode_flags |= CXGB4_ACTION_NATMODE_SPORT;
else
*natmode_flags |= CXGB4_ACTION_NATMODE_DPORT;
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
case FLOW_ACT_MANGLE_HDR_TYPE_UDP:
switch (offset) {
case PEDIT_UDP_SPORT_DPORT:
if (!valid_l4_mask(~mask)) {
netdev_err(dev, "%s: Unsupported mask for UDP L4 ports\n",
__func__);
return false;
}
if (~mask & PEDIT_TCP_UDP_SPORT_MASK)
*natmode_flags |= CXGB4_ACTION_NATMODE_SPORT;
else
*natmode_flags |= CXGB4_ACTION_NATMODE_DPORT;
break;
default:
netdev_err(dev, "%s: Unsupported pedit field\n",
__func__);
return false;
}
break;
default:
netdev_err(dev, "%s: Unsupported pedit type\n", __func__);
return false;
}
return true;
}
int cxgb4_validate_flow_actions(struct net_device *dev,
struct flow_action *actions,
struct netlink_ext_ack *extack,
u8 matchall_filter)
{
struct adapter *adap = netdev2adap(dev);
struct flow_action_entry *act;
bool act_redir = false;
bool act_pedit = false;
bool act_vlan = false;
u8 natmode_flags = 0;
int i;
if (!flow_action_basic_hw_stats_check(actions, extack))
return -EOPNOTSUPP;
flow_action_for_each(i, act, actions) {
switch (act->id) {
case FLOW_ACTION_ACCEPT:
case FLOW_ACTION_DROP:
/* Do nothing */
break;
case FLOW_ACTION_MIRRED:
case FLOW_ACTION_REDIRECT: {
struct net_device *n_dev, *target_dev;
bool found = false;
unsigned int i;
if (act->id == FLOW_ACTION_MIRRED &&
!matchall_filter) {
NL_SET_ERR_MSG_MOD(extack,
"Egress mirror action is only supported for tc-matchall");
return -EOPNOTSUPP;
}
target_dev = act->dev;
for_each_port(adap, i) {
n_dev = adap->port[i];
if (target_dev == n_dev) {
found = true;
break;
}
}
/* If interface doesn't belong to our hw, then
* the provided output port is not valid
*/
if (!found) {
netdev_err(dev, "%s: Out port invalid\n",
__func__);
return -EINVAL;
}
act_redir = true;
}
break;
case FLOW_ACTION_VLAN_POP:
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_MANGLE: {
u16 proto = be16_to_cpu(act->vlan.proto);
switch (act->id) {
case FLOW_ACTION_VLAN_POP:
break;
case FLOW_ACTION_VLAN_PUSH:
case FLOW_ACTION_VLAN_MANGLE:
if (proto != ETH_P_8021Q) {
netdev_err(dev, "%s: Unsupported vlan proto\n",
__func__);
return -EOPNOTSUPP;
}
break;
default:
netdev_err(dev, "%s: Unsupported vlan action\n",
__func__);
return -EOPNOTSUPP;
}
act_vlan = true;
}
break;
case FLOW_ACTION_MANGLE: {
bool pedit_valid = valid_pedit_action(dev, act,
&natmode_flags);
if (!pedit_valid)
return -EOPNOTSUPP;
act_pedit = true;
}
break;
case FLOW_ACTION_QUEUE:
/* Do nothing. cxgb4_set_filter will validate */
break;
default:
netdev_err(dev, "%s: Unsupported action\n", __func__);
return -EOPNOTSUPP;
}
}
if ((act_pedit || act_vlan) && !act_redir) {
netdev_err(dev, "%s: pedit/vlan rewrite invalid without egress redirect\n",
__func__);
return -EINVAL;
}
if (act_pedit) {
int ret;
ret = cxgb4_action_natmode_validate(adap, natmode_flags,
extack);
if (ret)
return ret;
}
return 0;
}
static void cxgb4_tc_flower_hash_prio_add(struct adapter *adap, u32 tc_prio)
{
spin_lock_bh(&adap->tids.ftid_lock);
if (adap->tids.tc_hash_tids_max_prio < tc_prio)
adap->tids.tc_hash_tids_max_prio = tc_prio;
spin_unlock_bh(&adap->tids.ftid_lock);
}
static void cxgb4_tc_flower_hash_prio_del(struct adapter *adap, u32 tc_prio)
{
struct tid_info *t = &adap->tids;
struct ch_tc_flower_entry *fe;
struct rhashtable_iter iter;
u32 found = 0;
spin_lock_bh(&t->ftid_lock);
/* Bail if the current rule is not the one with the max
* prio.
*/
if (t->tc_hash_tids_max_prio != tc_prio)
goto out_unlock;
/* Search for the next rule having the same or next lower
* max prio.
*/
rhashtable_walk_enter(&adap->flower_tbl, &iter);
do {
rhashtable_walk_start(&iter);
fe = rhashtable_walk_next(&iter);
while (!IS_ERR_OR_NULL(fe)) {
if (fe->fs.hash &&
fe->fs.tc_prio <= t->tc_hash_tids_max_prio) {
t->tc_hash_tids_max_prio = fe->fs.tc_prio;
found++;
/* Bail if we found another rule
* having the same prio as the
* current max one.
*/
if (fe->fs.tc_prio == tc_prio)
break;
}
fe = rhashtable_walk_next(&iter);
}
rhashtable_walk_stop(&iter);
} while (fe == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&iter);
if (!found)
t->tc_hash_tids_max_prio = 0;
out_unlock:
spin_unlock_bh(&t->ftid_lock);
}
int cxgb4_flow_rule_replace(struct net_device *dev, struct flow_rule *rule,
u32 tc_prio, struct netlink_ext_ack *extack,
struct ch_filter_specification *fs, u32 *tid)
{
struct adapter *adap = netdev2adap(dev);
struct filter_ctx ctx;
u8 inet_family;
int fidx, ret;
if (cxgb4_validate_flow_actions(dev, &rule->action, extack, 0))
return -EOPNOTSUPP;
if (cxgb4_validate_flow_match(dev, rule))
return -EOPNOTSUPP;
cxgb4_process_flow_match(dev, rule, fs);
cxgb4_process_flow_actions(dev, &rule->action, fs);
fs->hash = is_filter_exact_match(adap, fs);
inet_family = fs->type ? PF_INET6 : PF_INET;
/* Get a free filter entry TID, where we can insert this new
* rule. Only insert rule if its prio doesn't conflict with
* existing rules.
*/
fidx = cxgb4_get_free_ftid(dev, inet_family, fs->hash,
tc_prio);
if (fidx < 0) {
NL_SET_ERR_MSG_MOD(extack,
"No free LETCAM index available");
return -ENOMEM;
}
if (fidx < adap->tids.nhpftids) {
fs->prio = 1;
fs->hash = 0;
}
/* If the rule can be inserted into HASH region, then ignore
* the index to normal FILTER region.
*/
if (fs->hash)
fidx = 0;
fs->tc_prio = tc_prio;
init_completion(&ctx.completion);
ret = __cxgb4_set_filter(dev, fidx, fs, &ctx);
if (ret) {
netdev_err(dev, "%s: filter creation err %d\n",
__func__, ret);
return ret;
}
/* Wait for reply */
ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
if (!ret)
return -ETIMEDOUT;
/* Check if hw returned error for filter creation */
if (ctx.result)
return ctx.result;
*tid = ctx.tid;
if (fs->hash)
cxgb4_tc_flower_hash_prio_add(adap, tc_prio);
return 0;
}
int cxgb4_tc_flower_replace(struct net_device *dev,
struct flow_cls_offload *cls)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
struct netlink_ext_ack *extack = cls->common.extack;
struct adapter *adap = netdev2adap(dev);
struct ch_tc_flower_entry *ch_flower;
struct ch_filter_specification *fs;
int ret;
ch_flower = allocate_flower_entry();
if (!ch_flower) {
netdev_err(dev, "%s: ch_flower alloc failed.\n", __func__);
return -ENOMEM;
}
fs = &ch_flower->fs;
fs->hitcnts = 1;
fs->tc_cookie = cls->cookie;
ret = cxgb4_flow_rule_replace(dev, rule, cls->common.prio, extack, fs,
&ch_flower->filter_id);
if (ret)
goto free_entry;
ch_flower->tc_flower_cookie = cls->cookie;
ret = rhashtable_insert_fast(&adap->flower_tbl, &ch_flower->node,
adap->flower_ht_params);
if (ret)
goto del_filter;
return 0;
del_filter:
if (fs->hash)
cxgb4_tc_flower_hash_prio_del(adap, cls->common.prio);
cxgb4_del_filter(dev, ch_flower->filter_id, &ch_flower->fs);
free_entry:
kfree(ch_flower);
return ret;
}
int cxgb4_flow_rule_destroy(struct net_device *dev, u32 tc_prio,
struct ch_filter_specification *fs, int tid)
{
struct adapter *adap = netdev2adap(dev);
u8 hash;
int ret;
hash = fs->hash;
ret = cxgb4_del_filter(dev, tid, fs);
if (ret)
return ret;
if (hash)
cxgb4_tc_flower_hash_prio_del(adap, tc_prio);
return ret;
}
int cxgb4_tc_flower_destroy(struct net_device *dev,
struct flow_cls_offload *cls)
{
struct adapter *adap = netdev2adap(dev);
struct ch_tc_flower_entry *ch_flower;
int ret;
ch_flower = ch_flower_lookup(adap, cls->cookie);
if (!ch_flower)
return -ENOENT;
ret = cxgb4_flow_rule_destroy(dev, ch_flower->fs.tc_prio,
&ch_flower->fs, ch_flower->filter_id);
if (ret)
goto err;
ret = rhashtable_remove_fast(&adap->flower_tbl, &ch_flower->node,
adap->flower_ht_params);
if (ret) {
netdev_err(dev, "Flow remove from rhashtable failed");
goto err;
}
kfree_rcu(ch_flower, rcu);
err:
return ret;
}
static void ch_flower_stats_handler(struct work_struct *work)
{
struct adapter *adap = container_of(work, struct adapter,
flower_stats_work);
struct ch_tc_flower_entry *flower_entry;
struct ch_tc_flower_stats *ofld_stats;
struct rhashtable_iter iter;
u64 packets;
u64 bytes;
int ret;
rhashtable_walk_enter(&adap->flower_tbl, &iter);
do {
rhashtable_walk_start(&iter);
while ((flower_entry = rhashtable_walk_next(&iter)) &&
!IS_ERR(flower_entry)) {
ret = cxgb4_get_filter_counters(adap->port[0],
flower_entry->filter_id,
&packets, &bytes,
flower_entry->fs.hash);
if (!ret) {
spin_lock(&flower_entry->lock);
ofld_stats = &flower_entry->stats;
if (ofld_stats->prev_packet_count != packets) {
ofld_stats->prev_packet_count = packets;
ofld_stats->last_used = jiffies;
}
spin_unlock(&flower_entry->lock);
}
}
rhashtable_walk_stop(&iter);
} while (flower_entry == ERR_PTR(-EAGAIN));
rhashtable_walk_exit(&iter);
mod_timer(&adap->flower_stats_timer, jiffies + STATS_CHECK_PERIOD);
}
static void ch_flower_stats_cb(struct timer_list *t)
{
struct adapter *adap = from_timer(adap, t, flower_stats_timer);
schedule_work(&adap->flower_stats_work);
}
int cxgb4_tc_flower_stats(struct net_device *dev,
struct flow_cls_offload *cls)
{
struct adapter *adap = netdev2adap(dev);
struct ch_tc_flower_stats *ofld_stats;
struct ch_tc_flower_entry *ch_flower;
u64 packets;
u64 bytes;
int ret;
ch_flower = ch_flower_lookup(adap, cls->cookie);
if (!ch_flower) {
ret = -ENOENT;
goto err;
}
ret = cxgb4_get_filter_counters(dev, ch_flower->filter_id,
&packets, &bytes,
ch_flower->fs.hash);
if (ret < 0)
goto err;
spin_lock_bh(&ch_flower->lock);
ofld_stats = &ch_flower->stats;
if (ofld_stats->packet_count != packets) {
if (ofld_stats->prev_packet_count != packets)
ofld_stats->last_used = jiffies;
flow_stats_update(&cls->stats, bytes - ofld_stats->byte_count,
packets - ofld_stats->packet_count, 0,
ofld_stats->last_used,
FLOW_ACTION_HW_STATS_IMMEDIATE);
ofld_stats->packet_count = packets;
ofld_stats->byte_count = bytes;
ofld_stats->prev_packet_count = packets;
}
spin_unlock_bh(&ch_flower->lock);
return 0;
err:
return ret;
}
static const struct rhashtable_params cxgb4_tc_flower_ht_params = {
.nelem_hint = 384,
.head_offset = offsetof(struct ch_tc_flower_entry, node),
.key_offset = offsetof(struct ch_tc_flower_entry, tc_flower_cookie),
.key_len = sizeof(((struct ch_tc_flower_entry *)0)->tc_flower_cookie),
.max_size = 524288,
.min_size = 512,
.automatic_shrinking = true
};
int cxgb4_init_tc_flower(struct adapter *adap)
{
int ret;
if (adap->tc_flower_initialized)
return -EEXIST;
adap->flower_ht_params = cxgb4_tc_flower_ht_params;
ret = rhashtable_init(&adap->flower_tbl, &adap->flower_ht_params);
if (ret)
return ret;
INIT_WORK(&adap->flower_stats_work, ch_flower_stats_handler);
timer_setup(&adap->flower_stats_timer, ch_flower_stats_cb, 0);
mod_timer(&adap->flower_stats_timer, jiffies + STATS_CHECK_PERIOD);
adap->tc_flower_initialized = true;
return 0;
}
void cxgb4_cleanup_tc_flower(struct adapter *adap)
{
if (!adap->tc_flower_initialized)
return;
if (adap->flower_stats_timer.function)
del_timer_sync(&adap->flower_stats_timer);
cancel_work_sync(&adap->flower_stats_work);
rhashtable_destroy(&adap->flower_tbl);
adap->tc_flower_initialized = false;
}