mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux
				synced 2025-11-05 01:03:37 +10:00 
			
		
		
		
	In zs_create_pool(), we allocate memory more then sizeof(struct zs_pool) ovhd_size = roundup(sizeof(*pool), PAGE_SIZE); This patch allocate memory of exactly needed size. Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Dan Streetman <ddstreet@ieee.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1279 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1279 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * zsmalloc memory allocator
 | 
						|
 *
 | 
						|
 * Copyright (C) 2011  Nitin Gupta
 | 
						|
 * Copyright (C) 2012, 2013 Minchan Kim
 | 
						|
 *
 | 
						|
 * This code is released using a dual license strategy: BSD/GPL
 | 
						|
 * You can choose the license that better fits your requirements.
 | 
						|
 *
 | 
						|
 * Released under the terms of 3-clause BSD License
 | 
						|
 * Released under the terms of GNU General Public License Version 2.0
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * This allocator is designed for use with zram. Thus, the allocator is
 | 
						|
 * supposed to work well under low memory conditions. In particular, it
 | 
						|
 * never attempts higher order page allocation which is very likely to
 | 
						|
 * fail under memory pressure. On the other hand, if we just use single
 | 
						|
 * (0-order) pages, it would suffer from very high fragmentation --
 | 
						|
 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
 | 
						|
 * This was one of the major issues with its predecessor (xvmalloc).
 | 
						|
 *
 | 
						|
 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
 | 
						|
 * and links them together using various 'struct page' fields. These linked
 | 
						|
 * pages act as a single higher-order page i.e. an object can span 0-order
 | 
						|
 * page boundaries. The code refers to these linked pages as a single entity
 | 
						|
 * called zspage.
 | 
						|
 *
 | 
						|
 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
 | 
						|
 * since this satisfies the requirements of all its current users (in the
 | 
						|
 * worst case, page is incompressible and is thus stored "as-is" i.e. in
 | 
						|
 * uncompressed form). For allocation requests larger than this size, failure
 | 
						|
 * is returned (see zs_malloc).
 | 
						|
 *
 | 
						|
 * Additionally, zs_malloc() does not return a dereferenceable pointer.
 | 
						|
 * Instead, it returns an opaque handle (unsigned long) which encodes actual
 | 
						|
 * location of the allocated object. The reason for this indirection is that
 | 
						|
 * zsmalloc does not keep zspages permanently mapped since that would cause
 | 
						|
 * issues on 32-bit systems where the VA region for kernel space mappings
 | 
						|
 * is very small. So, before using the allocating memory, the object has to
 | 
						|
 * be mapped using zs_map_object() to get a usable pointer and subsequently
 | 
						|
 * unmapped using zs_unmap_object().
 | 
						|
 *
 | 
						|
 * Following is how we use various fields and flags of underlying
 | 
						|
 * struct page(s) to form a zspage.
 | 
						|
 *
 | 
						|
 * Usage of struct page fields:
 | 
						|
 *	page->first_page: points to the first component (0-order) page
 | 
						|
 *	page->index (union with page->freelist): offset of the first object
 | 
						|
 *		starting in this page. For the first page, this is
 | 
						|
 *		always 0, so we use this field (aka freelist) to point
 | 
						|
 *		to the first free object in zspage.
 | 
						|
 *	page->lru: links together all component pages (except the first page)
 | 
						|
 *		of a zspage
 | 
						|
 *
 | 
						|
 *	For _first_ page only:
 | 
						|
 *
 | 
						|
 *	page->private (union with page->first_page): refers to the
 | 
						|
 *		component page after the first page
 | 
						|
 *	page->freelist: points to the first free object in zspage.
 | 
						|
 *		Free objects are linked together using in-place
 | 
						|
 *		metadata.
 | 
						|
 *	page->objects: maximum number of objects we can store in this
 | 
						|
 *		zspage (class->zspage_order * PAGE_SIZE / class->size)
 | 
						|
 *	page->lru: links together first pages of various zspages.
 | 
						|
 *		Basically forming list of zspages in a fullness group.
 | 
						|
 *	page->mapping: class index and fullness group of the zspage
 | 
						|
 *
 | 
						|
 * Usage of struct page flags:
 | 
						|
 *	PG_private: identifies the first component page
 | 
						|
 *	PG_private2: identifies the last component page
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef CONFIG_ZSMALLOC_DEBUG
 | 
						|
#define DEBUG
 | 
						|
#endif
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/pgtable.h>
 | 
						|
#include <linux/cpumask.h>
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/vmalloc.h>
 | 
						|
#include <linux/hardirq.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/zsmalloc.h>
 | 
						|
#include <linux/zpool.h>
 | 
						|
 | 
						|
/*
 | 
						|
 * This must be power of 2 and greater than of equal to sizeof(link_free).
 | 
						|
 * These two conditions ensure that any 'struct link_free' itself doesn't
 | 
						|
 * span more than 1 page which avoids complex case of mapping 2 pages simply
 | 
						|
 * to restore link_free pointer values.
 | 
						|
 */
 | 
						|
#define ZS_ALIGN		8
 | 
						|
 | 
						|
/*
 | 
						|
 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
 | 
						|
 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
 | 
						|
 */
 | 
						|
#define ZS_MAX_ZSPAGE_ORDER 2
 | 
						|
#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
 | 
						|
 | 
						|
/*
 | 
						|
 * Object location (<PFN>, <obj_idx>) is encoded as
 | 
						|
 * as single (unsigned long) handle value.
 | 
						|
 *
 | 
						|
 * Note that object index <obj_idx> is relative to system
 | 
						|
 * page <PFN> it is stored in, so for each sub-page belonging
 | 
						|
 * to a zspage, obj_idx starts with 0.
 | 
						|
 *
 | 
						|
 * This is made more complicated by various memory models and PAE.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef MAX_PHYSMEM_BITS
 | 
						|
#ifdef CONFIG_HIGHMEM64G
 | 
						|
#define MAX_PHYSMEM_BITS 36
 | 
						|
#else /* !CONFIG_HIGHMEM64G */
 | 
						|
/*
 | 
						|
 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
 | 
						|
 * be PAGE_SHIFT
 | 
						|
 */
 | 
						|
#define MAX_PHYSMEM_BITS BITS_PER_LONG
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
#define _PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
 | 
						|
#define OBJ_INDEX_BITS	(BITS_PER_LONG - _PFN_BITS)
 | 
						|
#define OBJ_INDEX_MASK	((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 | 
						|
 | 
						|
#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 | 
						|
/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 | 
						|
#define ZS_MIN_ALLOC_SIZE \
 | 
						|
	MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 | 
						|
#define ZS_MAX_ALLOC_SIZE	PAGE_SIZE
 | 
						|
 | 
						|
/*
 | 
						|
 * On systems with 4K page size, this gives 255 size classes! There is a
 | 
						|
 * trader-off here:
 | 
						|
 *  - Large number of size classes is potentially wasteful as free page are
 | 
						|
 *    spread across these classes
 | 
						|
 *  - Small number of size classes causes large internal fragmentation
 | 
						|
 *  - Probably its better to use specific size classes (empirically
 | 
						|
 *    determined). NOTE: all those class sizes must be set as multiple of
 | 
						|
 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 | 
						|
 *
 | 
						|
 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 | 
						|
 *  (reason above)
 | 
						|
 */
 | 
						|
#define ZS_SIZE_CLASS_DELTA	(PAGE_SIZE >> 8)
 | 
						|
 | 
						|
/*
 | 
						|
 * We do not maintain any list for completely empty or full pages
 | 
						|
 */
 | 
						|
enum fullness_group {
 | 
						|
	ZS_ALMOST_FULL,
 | 
						|
	ZS_ALMOST_EMPTY,
 | 
						|
	_ZS_NR_FULLNESS_GROUPS,
 | 
						|
 | 
						|
	ZS_EMPTY,
 | 
						|
	ZS_FULL
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * number of size_classes
 | 
						|
 */
 | 
						|
static int zs_size_classes;
 | 
						|
 | 
						|
/*
 | 
						|
 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 | 
						|
 *	n <= N / f, where
 | 
						|
 * n = number of allocated objects
 | 
						|
 * N = total number of objects zspage can store
 | 
						|
 * f = fullness_threshold_frac
 | 
						|
 *
 | 
						|
 * Similarly, we assign zspage to:
 | 
						|
 *	ZS_ALMOST_FULL	when n > N / f
 | 
						|
 *	ZS_EMPTY	when n == 0
 | 
						|
 *	ZS_FULL		when n == N
 | 
						|
 *
 | 
						|
 * (see: fix_fullness_group())
 | 
						|
 */
 | 
						|
static const int fullness_threshold_frac = 4;
 | 
						|
 | 
						|
struct size_class {
 | 
						|
	/*
 | 
						|
	 * Size of objects stored in this class. Must be multiple
 | 
						|
	 * of ZS_ALIGN.
 | 
						|
	 */
 | 
						|
	int size;
 | 
						|
	unsigned int index;
 | 
						|
 | 
						|
	/* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 | 
						|
	int pages_per_zspage;
 | 
						|
 | 
						|
	spinlock_t lock;
 | 
						|
 | 
						|
	struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Placed within free objects to form a singly linked list.
 | 
						|
 * For every zspage, first_page->freelist gives head of this list.
 | 
						|
 *
 | 
						|
 * This must be power of 2 and less than or equal to ZS_ALIGN
 | 
						|
 */
 | 
						|
struct link_free {
 | 
						|
	/* Handle of next free chunk (encodes <PFN, obj_idx>) */
 | 
						|
	void *next;
 | 
						|
};
 | 
						|
 | 
						|
struct zs_pool {
 | 
						|
	struct size_class **size_class;
 | 
						|
 | 
						|
	gfp_t flags;	/* allocation flags used when growing pool */
 | 
						|
	atomic_long_t pages_allocated;
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * A zspage's class index and fullness group
 | 
						|
 * are encoded in its (first)page->mapping
 | 
						|
 */
 | 
						|
#define CLASS_IDX_BITS	28
 | 
						|
#define FULLNESS_BITS	4
 | 
						|
#define CLASS_IDX_MASK	((1 << CLASS_IDX_BITS) - 1)
 | 
						|
#define FULLNESS_MASK	((1 << FULLNESS_BITS) - 1)
 | 
						|
 | 
						|
struct mapping_area {
 | 
						|
#ifdef CONFIG_PGTABLE_MAPPING
 | 
						|
	struct vm_struct *vm; /* vm area for mapping object that span pages */
 | 
						|
#else
 | 
						|
	char *vm_buf; /* copy buffer for objects that span pages */
 | 
						|
#endif
 | 
						|
	char *vm_addr; /* address of kmap_atomic()'ed pages */
 | 
						|
	enum zs_mapmode vm_mm; /* mapping mode */
 | 
						|
};
 | 
						|
 | 
						|
/* zpool driver */
 | 
						|
 | 
						|
#ifdef CONFIG_ZPOOL
 | 
						|
 | 
						|
static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
 | 
						|
{
 | 
						|
	return zs_create_pool(gfp);
 | 
						|
}
 | 
						|
 | 
						|
static void zs_zpool_destroy(void *pool)
 | 
						|
{
 | 
						|
	zs_destroy_pool(pool);
 | 
						|
}
 | 
						|
 | 
						|
static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 | 
						|
			unsigned long *handle)
 | 
						|
{
 | 
						|
	*handle = zs_malloc(pool, size);
 | 
						|
	return *handle ? 0 : -1;
 | 
						|
}
 | 
						|
static void zs_zpool_free(void *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	zs_free(pool, handle);
 | 
						|
}
 | 
						|
 | 
						|
static int zs_zpool_shrink(void *pool, unsigned int pages,
 | 
						|
			unsigned int *reclaimed)
 | 
						|
{
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
 | 
						|
static void *zs_zpool_map(void *pool, unsigned long handle,
 | 
						|
			enum zpool_mapmode mm)
 | 
						|
{
 | 
						|
	enum zs_mapmode zs_mm;
 | 
						|
 | 
						|
	switch (mm) {
 | 
						|
	case ZPOOL_MM_RO:
 | 
						|
		zs_mm = ZS_MM_RO;
 | 
						|
		break;
 | 
						|
	case ZPOOL_MM_WO:
 | 
						|
		zs_mm = ZS_MM_WO;
 | 
						|
		break;
 | 
						|
	case ZPOOL_MM_RW: /* fallthru */
 | 
						|
	default:
 | 
						|
		zs_mm = ZS_MM_RW;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return zs_map_object(pool, handle, zs_mm);
 | 
						|
}
 | 
						|
static void zs_zpool_unmap(void *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	zs_unmap_object(pool, handle);
 | 
						|
}
 | 
						|
 | 
						|
static u64 zs_zpool_total_size(void *pool)
 | 
						|
{
 | 
						|
	return zs_get_total_pages(pool) << PAGE_SHIFT;
 | 
						|
}
 | 
						|
 | 
						|
static struct zpool_driver zs_zpool_driver = {
 | 
						|
	.type =		"zsmalloc",
 | 
						|
	.owner =	THIS_MODULE,
 | 
						|
	.create =	zs_zpool_create,
 | 
						|
	.destroy =	zs_zpool_destroy,
 | 
						|
	.malloc =	zs_zpool_malloc,
 | 
						|
	.free =		zs_zpool_free,
 | 
						|
	.shrink =	zs_zpool_shrink,
 | 
						|
	.map =		zs_zpool_map,
 | 
						|
	.unmap =	zs_zpool_unmap,
 | 
						|
	.total_size =	zs_zpool_total_size,
 | 
						|
};
 | 
						|
 | 
						|
MODULE_ALIAS("zpool-zsmalloc");
 | 
						|
#endif /* CONFIG_ZPOOL */
 | 
						|
 | 
						|
/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 | 
						|
static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 | 
						|
 | 
						|
static int is_first_page(struct page *page)
 | 
						|
{
 | 
						|
	return PagePrivate(page);
 | 
						|
}
 | 
						|
 | 
						|
static int is_last_page(struct page *page)
 | 
						|
{
 | 
						|
	return PagePrivate2(page);
 | 
						|
}
 | 
						|
 | 
						|
static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
 | 
						|
				enum fullness_group *fullness)
 | 
						|
{
 | 
						|
	unsigned long m;
 | 
						|
	BUG_ON(!is_first_page(page));
 | 
						|
 | 
						|
	m = (unsigned long)page->mapping;
 | 
						|
	*fullness = m & FULLNESS_MASK;
 | 
						|
	*class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
 | 
						|
}
 | 
						|
 | 
						|
static void set_zspage_mapping(struct page *page, unsigned int class_idx,
 | 
						|
				enum fullness_group fullness)
 | 
						|
{
 | 
						|
	unsigned long m;
 | 
						|
	BUG_ON(!is_first_page(page));
 | 
						|
 | 
						|
	m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
 | 
						|
			(fullness & FULLNESS_MASK);
 | 
						|
	page->mapping = (struct address_space *)m;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * zsmalloc divides the pool into various size classes where each
 | 
						|
 * class maintains a list of zspages where each zspage is divided
 | 
						|
 * into equal sized chunks. Each allocation falls into one of these
 | 
						|
 * classes depending on its size. This function returns index of the
 | 
						|
 * size class which has chunk size big enough to hold the give size.
 | 
						|
 */
 | 
						|
static int get_size_class_index(int size)
 | 
						|
{
 | 
						|
	int idx = 0;
 | 
						|
 | 
						|
	if (likely(size > ZS_MIN_ALLOC_SIZE))
 | 
						|
		idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 | 
						|
				ZS_SIZE_CLASS_DELTA);
 | 
						|
 | 
						|
	return idx;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For each size class, zspages are divided into different groups
 | 
						|
 * depending on how "full" they are. This was done so that we could
 | 
						|
 * easily find empty or nearly empty zspages when we try to shrink
 | 
						|
 * the pool (not yet implemented). This function returns fullness
 | 
						|
 * status of the given page.
 | 
						|
 */
 | 
						|
static enum fullness_group get_fullness_group(struct page *page)
 | 
						|
{
 | 
						|
	int inuse, max_objects;
 | 
						|
	enum fullness_group fg;
 | 
						|
	BUG_ON(!is_first_page(page));
 | 
						|
 | 
						|
	inuse = page->inuse;
 | 
						|
	max_objects = page->objects;
 | 
						|
 | 
						|
	if (inuse == 0)
 | 
						|
		fg = ZS_EMPTY;
 | 
						|
	else if (inuse == max_objects)
 | 
						|
		fg = ZS_FULL;
 | 
						|
	else if (inuse <= max_objects / fullness_threshold_frac)
 | 
						|
		fg = ZS_ALMOST_EMPTY;
 | 
						|
	else
 | 
						|
		fg = ZS_ALMOST_FULL;
 | 
						|
 | 
						|
	return fg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Each size class maintains various freelists and zspages are assigned
 | 
						|
 * to one of these freelists based on the number of live objects they
 | 
						|
 * have. This functions inserts the given zspage into the freelist
 | 
						|
 * identified by <class, fullness_group>.
 | 
						|
 */
 | 
						|
static void insert_zspage(struct page *page, struct size_class *class,
 | 
						|
				enum fullness_group fullness)
 | 
						|
{
 | 
						|
	struct page **head;
 | 
						|
 | 
						|
	BUG_ON(!is_first_page(page));
 | 
						|
 | 
						|
	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 | 
						|
		return;
 | 
						|
 | 
						|
	head = &class->fullness_list[fullness];
 | 
						|
	if (*head)
 | 
						|
		list_add_tail(&page->lru, &(*head)->lru);
 | 
						|
 | 
						|
	*head = page;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function removes the given zspage from the freelist identified
 | 
						|
 * by <class, fullness_group>.
 | 
						|
 */
 | 
						|
static void remove_zspage(struct page *page, struct size_class *class,
 | 
						|
				enum fullness_group fullness)
 | 
						|
{
 | 
						|
	struct page **head;
 | 
						|
 | 
						|
	BUG_ON(!is_first_page(page));
 | 
						|
 | 
						|
	if (fullness >= _ZS_NR_FULLNESS_GROUPS)
 | 
						|
		return;
 | 
						|
 | 
						|
	head = &class->fullness_list[fullness];
 | 
						|
	BUG_ON(!*head);
 | 
						|
	if (list_empty(&(*head)->lru))
 | 
						|
		*head = NULL;
 | 
						|
	else if (*head == page)
 | 
						|
		*head = (struct page *)list_entry((*head)->lru.next,
 | 
						|
					struct page, lru);
 | 
						|
 | 
						|
	list_del_init(&page->lru);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Each size class maintains zspages in different fullness groups depending
 | 
						|
 * on the number of live objects they contain. When allocating or freeing
 | 
						|
 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 | 
						|
 * to ALMOST_EMPTY when freeing an object. This function checks if such
 | 
						|
 * a status change has occurred for the given page and accordingly moves the
 | 
						|
 * page from the freelist of the old fullness group to that of the new
 | 
						|
 * fullness group.
 | 
						|
 */
 | 
						|
static enum fullness_group fix_fullness_group(struct zs_pool *pool,
 | 
						|
						struct page *page)
 | 
						|
{
 | 
						|
	int class_idx;
 | 
						|
	struct size_class *class;
 | 
						|
	enum fullness_group currfg, newfg;
 | 
						|
 | 
						|
	BUG_ON(!is_first_page(page));
 | 
						|
 | 
						|
	get_zspage_mapping(page, &class_idx, &currfg);
 | 
						|
	newfg = get_fullness_group(page);
 | 
						|
	if (newfg == currfg)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	class = pool->size_class[class_idx];
 | 
						|
	remove_zspage(page, class, currfg);
 | 
						|
	insert_zspage(page, class, newfg);
 | 
						|
	set_zspage_mapping(page, class_idx, newfg);
 | 
						|
 | 
						|
out:
 | 
						|
	return newfg;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * We have to decide on how many pages to link together
 | 
						|
 * to form a zspage for each size class. This is important
 | 
						|
 * to reduce wastage due to unusable space left at end of
 | 
						|
 * each zspage which is given as:
 | 
						|
 *	wastage = Zp - Zp % size_class
 | 
						|
 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 | 
						|
 *
 | 
						|
 * For example, for size class of 3/8 * PAGE_SIZE, we should
 | 
						|
 * link together 3 PAGE_SIZE sized pages to form a zspage
 | 
						|
 * since then we can perfectly fit in 8 such objects.
 | 
						|
 */
 | 
						|
static int get_pages_per_zspage(int class_size)
 | 
						|
{
 | 
						|
	int i, max_usedpc = 0;
 | 
						|
	/* zspage order which gives maximum used size per KB */
 | 
						|
	int max_usedpc_order = 1;
 | 
						|
 | 
						|
	for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 | 
						|
		int zspage_size;
 | 
						|
		int waste, usedpc;
 | 
						|
 | 
						|
		zspage_size = i * PAGE_SIZE;
 | 
						|
		waste = zspage_size % class_size;
 | 
						|
		usedpc = (zspage_size - waste) * 100 / zspage_size;
 | 
						|
 | 
						|
		if (usedpc > max_usedpc) {
 | 
						|
			max_usedpc = usedpc;
 | 
						|
			max_usedpc_order = i;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return max_usedpc_order;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A single 'zspage' is composed of many system pages which are
 | 
						|
 * linked together using fields in struct page. This function finds
 | 
						|
 * the first/head page, given any component page of a zspage.
 | 
						|
 */
 | 
						|
static struct page *get_first_page(struct page *page)
 | 
						|
{
 | 
						|
	if (is_first_page(page))
 | 
						|
		return page;
 | 
						|
	else
 | 
						|
		return page->first_page;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *get_next_page(struct page *page)
 | 
						|
{
 | 
						|
	struct page *next;
 | 
						|
 | 
						|
	if (is_last_page(page))
 | 
						|
		next = NULL;
 | 
						|
	else if (is_first_page(page))
 | 
						|
		next = (struct page *)page_private(page);
 | 
						|
	else
 | 
						|
		next = list_entry(page->lru.next, struct page, lru);
 | 
						|
 | 
						|
	return next;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Encode <page, obj_idx> as a single handle value.
 | 
						|
 * On hardware platforms with physical memory starting at 0x0 the pfn
 | 
						|
 * could be 0 so we ensure that the handle will never be 0 by adjusting the
 | 
						|
 * encoded obj_idx value before encoding.
 | 
						|
 */
 | 
						|
static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
 | 
						|
{
 | 
						|
	unsigned long handle;
 | 
						|
 | 
						|
	if (!page) {
 | 
						|
		BUG_ON(obj_idx);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	handle = page_to_pfn(page) << OBJ_INDEX_BITS;
 | 
						|
	handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
 | 
						|
 | 
						|
	return (void *)handle;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decode <page, obj_idx> pair from the given object handle. We adjust the
 | 
						|
 * decoded obj_idx back to its original value since it was adjusted in
 | 
						|
 * obj_location_to_handle().
 | 
						|
 */
 | 
						|
static void obj_handle_to_location(unsigned long handle, struct page **page,
 | 
						|
				unsigned long *obj_idx)
 | 
						|
{
 | 
						|
	*page = pfn_to_page(handle >> OBJ_INDEX_BITS);
 | 
						|
	*obj_idx = (handle & OBJ_INDEX_MASK) - 1;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long obj_idx_to_offset(struct page *page,
 | 
						|
				unsigned long obj_idx, int class_size)
 | 
						|
{
 | 
						|
	unsigned long off = 0;
 | 
						|
 | 
						|
	if (!is_first_page(page))
 | 
						|
		off = page->index;
 | 
						|
 | 
						|
	return off + obj_idx * class_size;
 | 
						|
}
 | 
						|
 | 
						|
static void reset_page(struct page *page)
 | 
						|
{
 | 
						|
	clear_bit(PG_private, &page->flags);
 | 
						|
	clear_bit(PG_private_2, &page->flags);
 | 
						|
	set_page_private(page, 0);
 | 
						|
	page->mapping = NULL;
 | 
						|
	page->freelist = NULL;
 | 
						|
	page_mapcount_reset(page);
 | 
						|
}
 | 
						|
 | 
						|
static void free_zspage(struct page *first_page)
 | 
						|
{
 | 
						|
	struct page *nextp, *tmp, *head_extra;
 | 
						|
 | 
						|
	BUG_ON(!is_first_page(first_page));
 | 
						|
	BUG_ON(first_page->inuse);
 | 
						|
 | 
						|
	head_extra = (struct page *)page_private(first_page);
 | 
						|
 | 
						|
	reset_page(first_page);
 | 
						|
	__free_page(first_page);
 | 
						|
 | 
						|
	/* zspage with only 1 system page */
 | 
						|
	if (!head_extra)
 | 
						|
		return;
 | 
						|
 | 
						|
	list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
 | 
						|
		list_del(&nextp->lru);
 | 
						|
		reset_page(nextp);
 | 
						|
		__free_page(nextp);
 | 
						|
	}
 | 
						|
	reset_page(head_extra);
 | 
						|
	__free_page(head_extra);
 | 
						|
}
 | 
						|
 | 
						|
/* Initialize a newly allocated zspage */
 | 
						|
static void init_zspage(struct page *first_page, struct size_class *class)
 | 
						|
{
 | 
						|
	unsigned long off = 0;
 | 
						|
	struct page *page = first_page;
 | 
						|
 | 
						|
	BUG_ON(!is_first_page(first_page));
 | 
						|
	while (page) {
 | 
						|
		struct page *next_page;
 | 
						|
		struct link_free *link;
 | 
						|
		unsigned int i = 1;
 | 
						|
		void *vaddr;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * page->index stores offset of first object starting
 | 
						|
		 * in the page. For the first page, this is always 0,
 | 
						|
		 * so we use first_page->index (aka ->freelist) to store
 | 
						|
		 * head of corresponding zspage's freelist.
 | 
						|
		 */
 | 
						|
		if (page != first_page)
 | 
						|
			page->index = off;
 | 
						|
 | 
						|
		vaddr = kmap_atomic(page);
 | 
						|
		link = (struct link_free *)vaddr + off / sizeof(*link);
 | 
						|
 | 
						|
		while ((off += class->size) < PAGE_SIZE) {
 | 
						|
			link->next = obj_location_to_handle(page, i++);
 | 
						|
			link += class->size / sizeof(*link);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We now come to the last (full or partial) object on this
 | 
						|
		 * page, which must point to the first object on the next
 | 
						|
		 * page (if present)
 | 
						|
		 */
 | 
						|
		next_page = get_next_page(page);
 | 
						|
		link->next = obj_location_to_handle(next_page, 0);
 | 
						|
		kunmap_atomic(vaddr);
 | 
						|
		page = next_page;
 | 
						|
		off %= PAGE_SIZE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocate a zspage for the given size class
 | 
						|
 */
 | 
						|
static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
 | 
						|
{
 | 
						|
	int i, error;
 | 
						|
	struct page *first_page = NULL, *uninitialized_var(prev_page);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Allocate individual pages and link them together as:
 | 
						|
	 * 1. first page->private = first sub-page
 | 
						|
	 * 2. all sub-pages are linked together using page->lru
 | 
						|
	 * 3. each sub-page is linked to the first page using page->first_page
 | 
						|
	 *
 | 
						|
	 * For each size class, First/Head pages are linked together using
 | 
						|
	 * page->lru. Also, we set PG_private to identify the first page
 | 
						|
	 * (i.e. no other sub-page has this flag set) and PG_private_2 to
 | 
						|
	 * identify the last page.
 | 
						|
	 */
 | 
						|
	error = -ENOMEM;
 | 
						|
	for (i = 0; i < class->pages_per_zspage; i++) {
 | 
						|
		struct page *page;
 | 
						|
 | 
						|
		page = alloc_page(flags);
 | 
						|
		if (!page)
 | 
						|
			goto cleanup;
 | 
						|
 | 
						|
		INIT_LIST_HEAD(&page->lru);
 | 
						|
		if (i == 0) {	/* first page */
 | 
						|
			SetPagePrivate(page);
 | 
						|
			set_page_private(page, 0);
 | 
						|
			first_page = page;
 | 
						|
			first_page->inuse = 0;
 | 
						|
		}
 | 
						|
		if (i == 1)
 | 
						|
			set_page_private(first_page, (unsigned long)page);
 | 
						|
		if (i >= 1)
 | 
						|
			page->first_page = first_page;
 | 
						|
		if (i >= 2)
 | 
						|
			list_add(&page->lru, &prev_page->lru);
 | 
						|
		if (i == class->pages_per_zspage - 1)	/* last page */
 | 
						|
			SetPagePrivate2(page);
 | 
						|
		prev_page = page;
 | 
						|
	}
 | 
						|
 | 
						|
	init_zspage(first_page, class);
 | 
						|
 | 
						|
	first_page->freelist = obj_location_to_handle(first_page, 0);
 | 
						|
	/* Maximum number of objects we can store in this zspage */
 | 
						|
	first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
 | 
						|
 | 
						|
	error = 0; /* Success */
 | 
						|
 | 
						|
cleanup:
 | 
						|
	if (unlikely(error) && first_page) {
 | 
						|
		free_zspage(first_page);
 | 
						|
		first_page = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	return first_page;
 | 
						|
}
 | 
						|
 | 
						|
static struct page *find_get_zspage(struct size_class *class)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct page *page;
 | 
						|
 | 
						|
	for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
 | 
						|
		page = class->fullness_list[i];
 | 
						|
		if (page)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	return page;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PGTABLE_MAPPING
 | 
						|
static inline int __zs_cpu_up(struct mapping_area *area)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Make sure we don't leak memory if a cpu UP notification
 | 
						|
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
 | 
						|
	 */
 | 
						|
	if (area->vm)
 | 
						|
		return 0;
 | 
						|
	area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
 | 
						|
	if (!area->vm)
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __zs_cpu_down(struct mapping_area *area)
 | 
						|
{
 | 
						|
	if (area->vm)
 | 
						|
		free_vm_area(area->vm);
 | 
						|
	area->vm = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static inline void *__zs_map_object(struct mapping_area *area,
 | 
						|
				struct page *pages[2], int off, int size)
 | 
						|
{
 | 
						|
	BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
 | 
						|
	area->vm_addr = area->vm->addr;
 | 
						|
	return area->vm_addr + off;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __zs_unmap_object(struct mapping_area *area,
 | 
						|
				struct page *pages[2], int off, int size)
 | 
						|
{
 | 
						|
	unsigned long addr = (unsigned long)area->vm_addr;
 | 
						|
 | 
						|
	unmap_kernel_range(addr, PAGE_SIZE * 2);
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_PGTABLE_MAPPING */
 | 
						|
 | 
						|
static inline int __zs_cpu_up(struct mapping_area *area)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Make sure we don't leak memory if a cpu UP notification
 | 
						|
	 * and zs_init() race and both call zs_cpu_up() on the same cpu
 | 
						|
	 */
 | 
						|
	if (area->vm_buf)
 | 
						|
		return 0;
 | 
						|
	area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
 | 
						|
	if (!area->vm_buf)
 | 
						|
		return -ENOMEM;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void __zs_cpu_down(struct mapping_area *area)
 | 
						|
{
 | 
						|
	kfree(area->vm_buf);
 | 
						|
	area->vm_buf = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void *__zs_map_object(struct mapping_area *area,
 | 
						|
			struct page *pages[2], int off, int size)
 | 
						|
{
 | 
						|
	int sizes[2];
 | 
						|
	void *addr;
 | 
						|
	char *buf = area->vm_buf;
 | 
						|
 | 
						|
	/* disable page faults to match kmap_atomic() return conditions */
 | 
						|
	pagefault_disable();
 | 
						|
 | 
						|
	/* no read fastpath */
 | 
						|
	if (area->vm_mm == ZS_MM_WO)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	sizes[0] = PAGE_SIZE - off;
 | 
						|
	sizes[1] = size - sizes[0];
 | 
						|
 | 
						|
	/* copy object to per-cpu buffer */
 | 
						|
	addr = kmap_atomic(pages[0]);
 | 
						|
	memcpy(buf, addr + off, sizes[0]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
	addr = kmap_atomic(pages[1]);
 | 
						|
	memcpy(buf + sizes[0], addr, sizes[1]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
out:
 | 
						|
	return area->vm_buf;
 | 
						|
}
 | 
						|
 | 
						|
static void __zs_unmap_object(struct mapping_area *area,
 | 
						|
			struct page *pages[2], int off, int size)
 | 
						|
{
 | 
						|
	int sizes[2];
 | 
						|
	void *addr;
 | 
						|
	char *buf = area->vm_buf;
 | 
						|
 | 
						|
	/* no write fastpath */
 | 
						|
	if (area->vm_mm == ZS_MM_RO)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	sizes[0] = PAGE_SIZE - off;
 | 
						|
	sizes[1] = size - sizes[0];
 | 
						|
 | 
						|
	/* copy per-cpu buffer to object */
 | 
						|
	addr = kmap_atomic(pages[0]);
 | 
						|
	memcpy(addr + off, buf, sizes[0]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
	addr = kmap_atomic(pages[1]);
 | 
						|
	memcpy(addr, buf + sizes[0], sizes[1]);
 | 
						|
	kunmap_atomic(addr);
 | 
						|
 | 
						|
out:
 | 
						|
	/* enable page faults to match kunmap_atomic() return conditions */
 | 
						|
	pagefault_enable();
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_PGTABLE_MAPPING */
 | 
						|
 | 
						|
static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
 | 
						|
				void *pcpu)
 | 
						|
{
 | 
						|
	int ret, cpu = (long)pcpu;
 | 
						|
	struct mapping_area *area;
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
	case CPU_UP_PREPARE:
 | 
						|
		area = &per_cpu(zs_map_area, cpu);
 | 
						|
		ret = __zs_cpu_up(area);
 | 
						|
		if (ret)
 | 
						|
			return notifier_from_errno(ret);
 | 
						|
		break;
 | 
						|
	case CPU_DEAD:
 | 
						|
	case CPU_UP_CANCELED:
 | 
						|
		area = &per_cpu(zs_map_area, cpu);
 | 
						|
		__zs_cpu_down(area);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	return NOTIFY_OK;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block zs_cpu_nb = {
 | 
						|
	.notifier_call = zs_cpu_notifier
 | 
						|
};
 | 
						|
 | 
						|
static void zs_unregister_cpu_notifier(void)
 | 
						|
{
 | 
						|
	int cpu;
 | 
						|
 | 
						|
	cpu_notifier_register_begin();
 | 
						|
 | 
						|
	for_each_online_cpu(cpu)
 | 
						|
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
 | 
						|
	__unregister_cpu_notifier(&zs_cpu_nb);
 | 
						|
 | 
						|
	cpu_notifier_register_done();
 | 
						|
}
 | 
						|
 | 
						|
static int zs_register_cpu_notifier(void)
 | 
						|
{
 | 
						|
	int cpu, uninitialized_var(ret);
 | 
						|
 | 
						|
	cpu_notifier_register_begin();
 | 
						|
 | 
						|
	__register_cpu_notifier(&zs_cpu_nb);
 | 
						|
	for_each_online_cpu(cpu) {
 | 
						|
		ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
 | 
						|
		if (notifier_to_errno(ret))
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	cpu_notifier_register_done();
 | 
						|
	return notifier_to_errno(ret);
 | 
						|
}
 | 
						|
 | 
						|
static void init_zs_size_classes(void)
 | 
						|
{
 | 
						|
	int nr;
 | 
						|
 | 
						|
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
 | 
						|
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
 | 
						|
		nr += 1;
 | 
						|
 | 
						|
	zs_size_classes = nr;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit zs_exit(void)
 | 
						|
{
 | 
						|
#ifdef CONFIG_ZPOOL
 | 
						|
	zpool_unregister_driver(&zs_zpool_driver);
 | 
						|
#endif
 | 
						|
	zs_unregister_cpu_notifier();
 | 
						|
}
 | 
						|
 | 
						|
static int __init zs_init(void)
 | 
						|
{
 | 
						|
	int ret = zs_register_cpu_notifier();
 | 
						|
 | 
						|
	if (ret) {
 | 
						|
		zs_unregister_cpu_notifier();
 | 
						|
		return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	init_zs_size_classes();
 | 
						|
 | 
						|
#ifdef CONFIG_ZPOOL
 | 
						|
	zpool_register_driver(&zs_zpool_driver);
 | 
						|
#endif
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
 | 
						|
{
 | 
						|
	return pages_per_zspage * PAGE_SIZE / size;
 | 
						|
}
 | 
						|
 | 
						|
static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
 | 
						|
{
 | 
						|
	if (prev->pages_per_zspage != pages_per_zspage)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (get_maxobj_per_zspage(prev->size, prev->pages_per_zspage)
 | 
						|
		!= get_maxobj_per_zspage(size, pages_per_zspage))
 | 
						|
		return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_create_pool - Creates an allocation pool to work from.
 | 
						|
 * @flags: allocation flags used to allocate pool metadata
 | 
						|
 *
 | 
						|
 * This function must be called before anything when using
 | 
						|
 * the zsmalloc allocator.
 | 
						|
 *
 | 
						|
 * On success, a pointer to the newly created pool is returned,
 | 
						|
 * otherwise NULL.
 | 
						|
 */
 | 
						|
struct zs_pool *zs_create_pool(gfp_t flags)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	struct zs_pool *pool;
 | 
						|
	struct size_class *prev_class = NULL;
 | 
						|
 | 
						|
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
 | 
						|
	if (!pool)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
 | 
						|
			GFP_KERNEL);
 | 
						|
	if (!pool->size_class) {
 | 
						|
		kfree(pool);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Iterate reversly, because, size of size_class that we want to use
 | 
						|
	 * for merging should be larger or equal to current size.
 | 
						|
	 */
 | 
						|
	for (i = zs_size_classes - 1; i >= 0; i--) {
 | 
						|
		int size;
 | 
						|
		int pages_per_zspage;
 | 
						|
		struct size_class *class;
 | 
						|
 | 
						|
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
 | 
						|
		if (size > ZS_MAX_ALLOC_SIZE)
 | 
						|
			size = ZS_MAX_ALLOC_SIZE;
 | 
						|
		pages_per_zspage = get_pages_per_zspage(size);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * size_class is used for normal zsmalloc operation such
 | 
						|
		 * as alloc/free for that size. Although it is natural that we
 | 
						|
		 * have one size_class for each size, there is a chance that we
 | 
						|
		 * can get more memory utilization if we use one size_class for
 | 
						|
		 * many different sizes whose size_class have same
 | 
						|
		 * characteristics. So, we makes size_class point to
 | 
						|
		 * previous size_class if possible.
 | 
						|
		 */
 | 
						|
		if (prev_class) {
 | 
						|
			if (can_merge(prev_class, size, pages_per_zspage)) {
 | 
						|
				pool->size_class[i] = prev_class;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
 | 
						|
		if (!class)
 | 
						|
			goto err;
 | 
						|
 | 
						|
		class->size = size;
 | 
						|
		class->index = i;
 | 
						|
		class->pages_per_zspage = pages_per_zspage;
 | 
						|
		spin_lock_init(&class->lock);
 | 
						|
		pool->size_class[i] = class;
 | 
						|
 | 
						|
		prev_class = class;
 | 
						|
	}
 | 
						|
 | 
						|
	pool->flags = flags;
 | 
						|
 | 
						|
	return pool;
 | 
						|
 | 
						|
err:
 | 
						|
	zs_destroy_pool(pool);
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_create_pool);
 | 
						|
 | 
						|
void zs_destroy_pool(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < zs_size_classes; i++) {
 | 
						|
		int fg;
 | 
						|
		struct size_class *class = pool->size_class[i];
 | 
						|
 | 
						|
		if (!class)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (class->index != i)
 | 
						|
			continue;
 | 
						|
 | 
						|
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
 | 
						|
			if (class->fullness_list[fg]) {
 | 
						|
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
 | 
						|
					class->size, fg);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		kfree(class);
 | 
						|
	}
 | 
						|
 | 
						|
	kfree(pool->size_class);
 | 
						|
	kfree(pool);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_destroy_pool);
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_malloc - Allocate block of given size from pool.
 | 
						|
 * @pool: pool to allocate from
 | 
						|
 * @size: size of block to allocate
 | 
						|
 *
 | 
						|
 * On success, handle to the allocated object is returned,
 | 
						|
 * otherwise 0.
 | 
						|
 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
 | 
						|
 */
 | 
						|
unsigned long zs_malloc(struct zs_pool *pool, size_t size)
 | 
						|
{
 | 
						|
	unsigned long obj;
 | 
						|
	struct link_free *link;
 | 
						|
	struct size_class *class;
 | 
						|
	void *vaddr;
 | 
						|
 | 
						|
	struct page *first_page, *m_page;
 | 
						|
	unsigned long m_objidx, m_offset;
 | 
						|
 | 
						|
	if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	class = pool->size_class[get_size_class_index(size)];
 | 
						|
 | 
						|
	spin_lock(&class->lock);
 | 
						|
	first_page = find_get_zspage(class);
 | 
						|
 | 
						|
	if (!first_page) {
 | 
						|
		spin_unlock(&class->lock);
 | 
						|
		first_page = alloc_zspage(class, pool->flags);
 | 
						|
		if (unlikely(!first_page))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		set_zspage_mapping(first_page, class->index, ZS_EMPTY);
 | 
						|
		atomic_long_add(class->pages_per_zspage,
 | 
						|
					&pool->pages_allocated);
 | 
						|
		spin_lock(&class->lock);
 | 
						|
	}
 | 
						|
 | 
						|
	obj = (unsigned long)first_page->freelist;
 | 
						|
	obj_handle_to_location(obj, &m_page, &m_objidx);
 | 
						|
	m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
 | 
						|
 | 
						|
	vaddr = kmap_atomic(m_page);
 | 
						|
	link = (struct link_free *)vaddr + m_offset / sizeof(*link);
 | 
						|
	first_page->freelist = link->next;
 | 
						|
	memset(link, POISON_INUSE, sizeof(*link));
 | 
						|
	kunmap_atomic(vaddr);
 | 
						|
 | 
						|
	first_page->inuse++;
 | 
						|
	/* Now move the zspage to another fullness group, if required */
 | 
						|
	fix_fullness_group(pool, first_page);
 | 
						|
	spin_unlock(&class->lock);
 | 
						|
 | 
						|
	return obj;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_malloc);
 | 
						|
 | 
						|
void zs_free(struct zs_pool *pool, unsigned long obj)
 | 
						|
{
 | 
						|
	struct link_free *link;
 | 
						|
	struct page *first_page, *f_page;
 | 
						|
	unsigned long f_objidx, f_offset;
 | 
						|
	void *vaddr;
 | 
						|
 | 
						|
	int class_idx;
 | 
						|
	struct size_class *class;
 | 
						|
	enum fullness_group fullness;
 | 
						|
 | 
						|
	if (unlikely(!obj))
 | 
						|
		return;
 | 
						|
 | 
						|
	obj_handle_to_location(obj, &f_page, &f_objidx);
 | 
						|
	first_page = get_first_page(f_page);
 | 
						|
 | 
						|
	get_zspage_mapping(first_page, &class_idx, &fullness);
 | 
						|
	class = pool->size_class[class_idx];
 | 
						|
	f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
 | 
						|
 | 
						|
	spin_lock(&class->lock);
 | 
						|
 | 
						|
	/* Insert this object in containing zspage's freelist */
 | 
						|
	vaddr = kmap_atomic(f_page);
 | 
						|
	link = (struct link_free *)(vaddr + f_offset);
 | 
						|
	link->next = first_page->freelist;
 | 
						|
	kunmap_atomic(vaddr);
 | 
						|
	first_page->freelist = (void *)obj;
 | 
						|
 | 
						|
	first_page->inuse--;
 | 
						|
	fullness = fix_fullness_group(pool, first_page);
 | 
						|
	spin_unlock(&class->lock);
 | 
						|
 | 
						|
	if (fullness == ZS_EMPTY) {
 | 
						|
		atomic_long_sub(class->pages_per_zspage,
 | 
						|
				&pool->pages_allocated);
 | 
						|
		free_zspage(first_page);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_free);
 | 
						|
 | 
						|
/**
 | 
						|
 * zs_map_object - get address of allocated object from handle.
 | 
						|
 * @pool: pool from which the object was allocated
 | 
						|
 * @handle: handle returned from zs_malloc
 | 
						|
 *
 | 
						|
 * Before using an object allocated from zs_malloc, it must be mapped using
 | 
						|
 * this function. When done with the object, it must be unmapped using
 | 
						|
 * zs_unmap_object.
 | 
						|
 *
 | 
						|
 * Only one object can be mapped per cpu at a time. There is no protection
 | 
						|
 * against nested mappings.
 | 
						|
 *
 | 
						|
 * This function returns with preemption and page faults disabled.
 | 
						|
 */
 | 
						|
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
 | 
						|
			enum zs_mapmode mm)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	unsigned long obj_idx, off;
 | 
						|
 | 
						|
	unsigned int class_idx;
 | 
						|
	enum fullness_group fg;
 | 
						|
	struct size_class *class;
 | 
						|
	struct mapping_area *area;
 | 
						|
	struct page *pages[2];
 | 
						|
 | 
						|
	BUG_ON(!handle);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Because we use per-cpu mapping areas shared among the
 | 
						|
	 * pools/users, we can't allow mapping in interrupt context
 | 
						|
	 * because it can corrupt another users mappings.
 | 
						|
	 */
 | 
						|
	BUG_ON(in_interrupt());
 | 
						|
 | 
						|
	obj_handle_to_location(handle, &page, &obj_idx);
 | 
						|
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
 | 
						|
	class = pool->size_class[class_idx];
 | 
						|
	off = obj_idx_to_offset(page, obj_idx, class->size);
 | 
						|
 | 
						|
	area = &get_cpu_var(zs_map_area);
 | 
						|
	area->vm_mm = mm;
 | 
						|
	if (off + class->size <= PAGE_SIZE) {
 | 
						|
		/* this object is contained entirely within a page */
 | 
						|
		area->vm_addr = kmap_atomic(page);
 | 
						|
		return area->vm_addr + off;
 | 
						|
	}
 | 
						|
 | 
						|
	/* this object spans two pages */
 | 
						|
	pages[0] = page;
 | 
						|
	pages[1] = get_next_page(page);
 | 
						|
	BUG_ON(!pages[1]);
 | 
						|
 | 
						|
	return __zs_map_object(area, pages, off, class->size);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_map_object);
 | 
						|
 | 
						|
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
 | 
						|
{
 | 
						|
	struct page *page;
 | 
						|
	unsigned long obj_idx, off;
 | 
						|
 | 
						|
	unsigned int class_idx;
 | 
						|
	enum fullness_group fg;
 | 
						|
	struct size_class *class;
 | 
						|
	struct mapping_area *area;
 | 
						|
 | 
						|
	BUG_ON(!handle);
 | 
						|
 | 
						|
	obj_handle_to_location(handle, &page, &obj_idx);
 | 
						|
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
 | 
						|
	class = pool->size_class[class_idx];
 | 
						|
	off = obj_idx_to_offset(page, obj_idx, class->size);
 | 
						|
 | 
						|
	area = this_cpu_ptr(&zs_map_area);
 | 
						|
	if (off + class->size <= PAGE_SIZE)
 | 
						|
		kunmap_atomic(area->vm_addr);
 | 
						|
	else {
 | 
						|
		struct page *pages[2];
 | 
						|
 | 
						|
		pages[0] = page;
 | 
						|
		pages[1] = get_next_page(page);
 | 
						|
		BUG_ON(!pages[1]);
 | 
						|
 | 
						|
		__zs_unmap_object(area, pages, off, class->size);
 | 
						|
	}
 | 
						|
	put_cpu_var(zs_map_area);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_unmap_object);
 | 
						|
 | 
						|
unsigned long zs_get_total_pages(struct zs_pool *pool)
 | 
						|
{
 | 
						|
	return atomic_long_read(&pool->pages_allocated);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(zs_get_total_pages);
 | 
						|
 | 
						|
module_init(zs_init);
 | 
						|
module_exit(zs_exit);
 | 
						|
 | 
						|
MODULE_LICENSE("Dual BSD/GPL");
 | 
						|
MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
 |