linux-mainline/tools/perf/pmu-events/arch/arm64/arm/neoverse-n2-v2/l1d_cache.json
James Clark 4473949074 perf vendor events arm64: Update N2 and V2 metrics and events using Arm telemetry repo
Apart from some slight naming and grouping differences, the new metrics
are functionally the same as the existing ones. Any missing metrics were
manually appended to the end of the auto generated file.

For the events, the new data includes descriptions that may have product
specific details and new groupings that will be consistent with other
products.

After generating the metrics from the telemetry repo [1], the following
manual steps were performed:

 * Change the topdown expressions to compare on CPUID and use
   #slots so that the same data can be shared between N2 and V2. Apart
   from these modifications, the expressions now match more closely with
   the Arm telemetry data which will hopefully make future updates
   easier.

 * Append some metrics from the old N2/V2 data that aren't present in
   the telemetry data. These will possibly be added to the
   telemetry-solution repo at a later time:

    l3d_cache_mpki, l3d_cache_miss_rate, branch_pki, ipc_rate, spec_ipc,
    retired_rate, wasted_rate, branch_immed_spec_rate,
    branch_return_spec_rate, branch_indirect_spec_rate

[1]: https://gitlab.arm.com/telemetry-solution/telemetry-solution/-/blob/main/data/pmu/cpu/neoverse/neoverse-n2.json

Signed-off-by: James Clark <james.clark@arm.com>
Reviewed-by: John Garry <john.g.garry@oracle.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Eduard Zingerman <eddyz87@gmail.com>
Cc: Haixin Yu <yuhaixin.yhx@linux.alibaba.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jing Zhang <renyu.zj@linux.alibaba.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mike Leach <mike.leach@linaro.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Nick Forrington <nick.forrington@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Sohom Datta <sohomdatta1@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Link: https://lore.kernel.org/r/20230816114841.1679234-7-james.clark@arm.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2023-08-17 14:12:50 -03:00

55 lines
4.5 KiB
JSON

[
{
"ArchStdEvent": "L1D_CACHE_REFILL",
"PublicDescription": "Counts level 1 data cache refills caused by speculatively executed load or store operations that missed in the level 1 data cache. This event only counts one event per cache line. This event does not count cache line allocations from preload instructions or from hardware cache prefetching."
},
{
"ArchStdEvent": "L1D_CACHE",
"PublicDescription": "Counts level 1 data cache accesses from any load/store operations. Atomic operations that resolve in the CPUs caches (near atomic operations) count as both a write access and read access. Each access to a cache line is counted including the multiple accesses caused by single instructions such as LDM or STM. Each access to other level 1 data or unified memory structures, for example refill buffers, write buffers, and write-back buffers, are also counted."
},
{
"ArchStdEvent": "L1D_CACHE_WB",
"PublicDescription": "Counts write-backs of dirty data from the L1 data cache to the L2 cache. This occurs when either a dirty cache line is evicted from L1 data cache and allocated in the L2 cache or dirty data is written to the L2 and possibly to the next level of cache. This event counts both victim cache line evictions and cache write-backs from snoops or cache maintenance operations. The following cache operations are not counted:\n\n1. Invalidations which do not result in data being transferred out of the L1 (such as evictions of clean data),\n2. Full line writes which write to L2 without writing L1, such as write streaming mode."
},
{
"ArchStdEvent": "L1D_CACHE_LMISS_RD",
"PublicDescription": "Counts cache line refills into the level 1 data cache from any memory read operations, that incurred additional latency."
},
{
"ArchStdEvent": "L1D_CACHE_RD",
"PublicDescription": "Counts level 1 data cache accesses from any load operation. Atomic load operations that resolve in the CPUs caches count as both a write access and read access."
},
{
"ArchStdEvent": "L1D_CACHE_WR",
"PublicDescription": "Counts level 1 data cache accesses generated by store operations. This event also counts accesses caused by a DC ZVA (data cache zero, specified by virtual address) instruction. Near atomic operations that resolve in the CPUs caches count as a write access and read access."
},
{
"ArchStdEvent": "L1D_CACHE_REFILL_RD",
"PublicDescription": "Counts level 1 data cache refills caused by speculatively executed load instructions where the memory read operation misses in the level 1 data cache. This event only counts one event per cache line."
},
{
"ArchStdEvent": "L1D_CACHE_REFILL_WR",
"PublicDescription": "Counts level 1 data cache refills caused by speculatively executed store instructions where the memory write operation misses in the level 1 data cache. This event only counts one event per cache line."
},
{
"ArchStdEvent": "L1D_CACHE_REFILL_INNER",
"PublicDescription": "Counts level 1 data cache refills where the cache line data came from caches inside the immediate cluster of the core."
},
{
"ArchStdEvent": "L1D_CACHE_REFILL_OUTER",
"PublicDescription": "Counts level 1 data cache refills for which the cache line data came from outside the immediate cluster of the core, like an SLC in the system interconnect or DRAM."
},
{
"ArchStdEvent": "L1D_CACHE_WB_VICTIM",
"PublicDescription": "Counts dirty cache line evictions from the level 1 data cache caused by a new cache line allocation. This event does not count evictions caused by cache maintenance operations."
},
{
"ArchStdEvent": "L1D_CACHE_WB_CLEAN",
"PublicDescription": "Counts write-backs from the level 1 data cache that are a result of a coherency operation made by another CPU. Event count includes cache maintenance operations."
},
{
"ArchStdEvent": "L1D_CACHE_INVAL",
"PublicDescription": "Counts each explicit invalidation of a cache line in the level 1 data cache caused by:\n\n- Cache Maintenance Operations (CMO) that operate by a virtual address.\n- Broadcast cache coherency operations from another CPU in the system.\n\nThis event does not count for the following conditions:\n\n1. A cache refill invalidates a cache line.\n2. A CMO which is executed on that CPU and invalidates a cache line specified by set/way.\n\nNote that CMOs that operate by set/way cannot be broadcast from one CPU to another."
}
]