mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux
				synced 2025-10-30 02:28:31 +10:00 
			
		
		
		
	Some typos are found out by misspell-fixer tool: $ misspell-fixer -rnv ./net/sched/ ./net/sched/act_api.c:686 ./net/sched/act_bpf.c:68 ./net/sched/cls_rsvp.h:241 ./net/sched/em_cmp.c:44 ./net/sched/sch_pie.c:408 Fix typos found by misspell-fixer. Signed-off-by: Menglong Dong <dong.menglong@zte.com.cn> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/r/5fa8e9d4.1c69fb81.5d889.5c64@mx.google.com Signed-off-by: Jakub Kicinski <kuba@kernel.org>
		
			
				
	
	
		
			577 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			577 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // SPDX-License-Identifier: GPL-2.0-only
 | |
| /* Copyright (C) 2013 Cisco Systems, Inc, 2013.
 | |
|  *
 | |
|  * Author: Vijay Subramanian <vijaynsu@cisco.com>
 | |
|  * Author: Mythili Prabhu <mysuryan@cisco.com>
 | |
|  *
 | |
|  * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
 | |
|  * University of Oslo, Norway.
 | |
|  *
 | |
|  * References:
 | |
|  * RFC 8033: https://tools.ietf.org/html/rfc8033
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <net/pkt_sched.h>
 | |
| #include <net/inet_ecn.h>
 | |
| #include <net/pie.h>
 | |
| 
 | |
| /* private data for the Qdisc */
 | |
| struct pie_sched_data {
 | |
| 	struct pie_vars vars;
 | |
| 	struct pie_params params;
 | |
| 	struct pie_stats stats;
 | |
| 	struct timer_list adapt_timer;
 | |
| 	struct Qdisc *sch;
 | |
| };
 | |
| 
 | |
| bool pie_drop_early(struct Qdisc *sch, struct pie_params *params,
 | |
| 		    struct pie_vars *vars, u32 backlog, u32 packet_size)
 | |
| {
 | |
| 	u64 rnd;
 | |
| 	u64 local_prob = vars->prob;
 | |
| 	u32 mtu = psched_mtu(qdisc_dev(sch));
 | |
| 
 | |
| 	/* If there is still burst allowance left skip random early drop */
 | |
| 	if (vars->burst_time > 0)
 | |
| 		return false;
 | |
| 
 | |
| 	/* If current delay is less than half of target, and
 | |
| 	 * if drop prob is low already, disable early_drop
 | |
| 	 */
 | |
| 	if ((vars->qdelay < params->target / 2) &&
 | |
| 	    (vars->prob < MAX_PROB / 5))
 | |
| 		return false;
 | |
| 
 | |
| 	/* If we have fewer than 2 mtu-sized packets, disable pie_drop_early,
 | |
| 	 * similar to min_th in RED
 | |
| 	 */
 | |
| 	if (backlog < 2 * mtu)
 | |
| 		return false;
 | |
| 
 | |
| 	/* If bytemode is turned on, use packet size to compute new
 | |
| 	 * probablity. Smaller packets will have lower drop prob in this case
 | |
| 	 */
 | |
| 	if (params->bytemode && packet_size <= mtu)
 | |
| 		local_prob = (u64)packet_size * div_u64(local_prob, mtu);
 | |
| 	else
 | |
| 		local_prob = vars->prob;
 | |
| 
 | |
| 	if (local_prob == 0)
 | |
| 		vars->accu_prob = 0;
 | |
| 	else
 | |
| 		vars->accu_prob += local_prob;
 | |
| 
 | |
| 	if (vars->accu_prob < (MAX_PROB / 100) * 85)
 | |
| 		return false;
 | |
| 	if (vars->accu_prob >= (MAX_PROB / 2) * 17)
 | |
| 		return true;
 | |
| 
 | |
| 	prandom_bytes(&rnd, 8);
 | |
| 	if ((rnd >> BITS_PER_BYTE) < local_prob) {
 | |
| 		vars->accu_prob = 0;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pie_drop_early);
 | |
| 
 | |
| static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 | |
| 			     struct sk_buff **to_free)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 	bool enqueue = false;
 | |
| 
 | |
| 	if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
 | |
| 		q->stats.overlimit++;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog,
 | |
| 			    skb->len)) {
 | |
| 		enqueue = true;
 | |
| 	} else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
 | |
| 		   INET_ECN_set_ce(skb)) {
 | |
| 		/* If packet is ecn capable, mark it if drop probability
 | |
| 		 * is lower than 10%, else drop it.
 | |
| 		 */
 | |
| 		q->stats.ecn_mark++;
 | |
| 		enqueue = true;
 | |
| 	}
 | |
| 
 | |
| 	/* we can enqueue the packet */
 | |
| 	if (enqueue) {
 | |
| 		/* Set enqueue time only when dq_rate_estimator is disabled. */
 | |
| 		if (!q->params.dq_rate_estimator)
 | |
| 			pie_set_enqueue_time(skb);
 | |
| 
 | |
| 		q->stats.packets_in++;
 | |
| 		if (qdisc_qlen(sch) > q->stats.maxq)
 | |
| 			q->stats.maxq = qdisc_qlen(sch);
 | |
| 
 | |
| 		return qdisc_enqueue_tail(skb, sch);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	q->stats.dropped++;
 | |
| 	q->vars.accu_prob = 0;
 | |
| 	return qdisc_drop(skb, sch, to_free);
 | |
| }
 | |
| 
 | |
| static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
 | |
| 	[TCA_PIE_TARGET]		= {.type = NLA_U32},
 | |
| 	[TCA_PIE_LIMIT]			= {.type = NLA_U32},
 | |
| 	[TCA_PIE_TUPDATE]		= {.type = NLA_U32},
 | |
| 	[TCA_PIE_ALPHA]			= {.type = NLA_U32},
 | |
| 	[TCA_PIE_BETA]			= {.type = NLA_U32},
 | |
| 	[TCA_PIE_ECN]			= {.type = NLA_U32},
 | |
| 	[TCA_PIE_BYTEMODE]		= {.type = NLA_U32},
 | |
| 	[TCA_PIE_DQ_RATE_ESTIMATOR]	= {.type = NLA_U32},
 | |
| };
 | |
| 
 | |
| static int pie_change(struct Qdisc *sch, struct nlattr *opt,
 | |
| 		      struct netlink_ext_ack *extack)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *tb[TCA_PIE_MAX + 1];
 | |
| 	unsigned int qlen, dropped = 0;
 | |
| 	int err;
 | |
| 
 | |
| 	if (!opt)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy,
 | |
| 					  NULL);
 | |
| 	if (err < 0)
 | |
| 		return err;
 | |
| 
 | |
| 	sch_tree_lock(sch);
 | |
| 
 | |
| 	/* convert from microseconds to pschedtime */
 | |
| 	if (tb[TCA_PIE_TARGET]) {
 | |
| 		/* target is in us */
 | |
| 		u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
 | |
| 
 | |
| 		/* convert to pschedtime */
 | |
| 		q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
 | |
| 	}
 | |
| 
 | |
| 	/* tupdate is in jiffies */
 | |
| 	if (tb[TCA_PIE_TUPDATE])
 | |
| 		q->params.tupdate =
 | |
| 			usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
 | |
| 
 | |
| 	if (tb[TCA_PIE_LIMIT]) {
 | |
| 		u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
 | |
| 
 | |
| 		q->params.limit = limit;
 | |
| 		sch->limit = limit;
 | |
| 	}
 | |
| 
 | |
| 	if (tb[TCA_PIE_ALPHA])
 | |
| 		q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
 | |
| 
 | |
| 	if (tb[TCA_PIE_BETA])
 | |
| 		q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
 | |
| 
 | |
| 	if (tb[TCA_PIE_ECN])
 | |
| 		q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
 | |
| 
 | |
| 	if (tb[TCA_PIE_BYTEMODE])
 | |
| 		q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
 | |
| 
 | |
| 	if (tb[TCA_PIE_DQ_RATE_ESTIMATOR])
 | |
| 		q->params.dq_rate_estimator =
 | |
| 				nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]);
 | |
| 
 | |
| 	/* Drop excess packets if new limit is lower */
 | |
| 	qlen = sch->q.qlen;
 | |
| 	while (sch->q.qlen > sch->limit) {
 | |
| 		struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
 | |
| 
 | |
| 		dropped += qdisc_pkt_len(skb);
 | |
| 		qdisc_qstats_backlog_dec(sch, skb);
 | |
| 		rtnl_qdisc_drop(skb, sch);
 | |
| 	}
 | |
| 	qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
 | |
| 
 | |
| 	sch_tree_unlock(sch);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params,
 | |
| 			 struct pie_vars *vars, u32 backlog)
 | |
| {
 | |
| 	psched_time_t now = psched_get_time();
 | |
| 	u32 dtime = 0;
 | |
| 
 | |
| 	/* If dq_rate_estimator is disabled, calculate qdelay using the
 | |
| 	 * packet timestamp.
 | |
| 	 */
 | |
| 	if (!params->dq_rate_estimator) {
 | |
| 		vars->qdelay = now - pie_get_enqueue_time(skb);
 | |
| 
 | |
| 		if (vars->dq_tstamp != DTIME_INVALID)
 | |
| 			dtime = now - vars->dq_tstamp;
 | |
| 
 | |
| 		vars->dq_tstamp = now;
 | |
| 
 | |
| 		if (backlog == 0)
 | |
| 			vars->qdelay = 0;
 | |
| 
 | |
| 		if (dtime == 0)
 | |
| 			return;
 | |
| 
 | |
| 		goto burst_allowance_reduction;
 | |
| 	}
 | |
| 
 | |
| 	/* If current queue is about 10 packets or more and dq_count is unset
 | |
| 	 * we have enough packets to calculate the drain rate. Save
 | |
| 	 * current time as dq_tstamp and start measurement cycle.
 | |
| 	 */
 | |
| 	if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) {
 | |
| 		vars->dq_tstamp = psched_get_time();
 | |
| 		vars->dq_count = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate the average drain rate from this value. If queue length
 | |
| 	 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset
 | |
| 	 * the dq_count to -1 as we don't have enough packets to calculate the
 | |
| 	 * drain rate anymore. The following if block is entered only when we
 | |
| 	 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
 | |
| 	 * and we calculate the drain rate for the threshold here.  dq_count is
 | |
| 	 * in bytes, time difference in psched_time, hence rate is in
 | |
| 	 * bytes/psched_time.
 | |
| 	 */
 | |
| 	if (vars->dq_count != DQCOUNT_INVALID) {
 | |
| 		vars->dq_count += skb->len;
 | |
| 
 | |
| 		if (vars->dq_count >= QUEUE_THRESHOLD) {
 | |
| 			u32 count = vars->dq_count << PIE_SCALE;
 | |
| 
 | |
| 			dtime = now - vars->dq_tstamp;
 | |
| 
 | |
| 			if (dtime == 0)
 | |
| 				return;
 | |
| 
 | |
| 			count = count / dtime;
 | |
| 
 | |
| 			if (vars->avg_dq_rate == 0)
 | |
| 				vars->avg_dq_rate = count;
 | |
| 			else
 | |
| 				vars->avg_dq_rate =
 | |
| 				    (vars->avg_dq_rate -
 | |
| 				     (vars->avg_dq_rate >> 3)) + (count >> 3);
 | |
| 
 | |
| 			/* If the queue has receded below the threshold, we hold
 | |
| 			 * on to the last drain rate calculated, else we reset
 | |
| 			 * dq_count to 0 to re-enter the if block when the next
 | |
| 			 * packet is dequeued
 | |
| 			 */
 | |
| 			if (backlog < QUEUE_THRESHOLD) {
 | |
| 				vars->dq_count = DQCOUNT_INVALID;
 | |
| 			} else {
 | |
| 				vars->dq_count = 0;
 | |
| 				vars->dq_tstamp = psched_get_time();
 | |
| 			}
 | |
| 
 | |
| 			goto burst_allowance_reduction;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| burst_allowance_reduction:
 | |
| 	if (vars->burst_time > 0) {
 | |
| 		if (vars->burst_time > dtime)
 | |
| 			vars->burst_time -= dtime;
 | |
| 		else
 | |
| 			vars->burst_time = 0;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pie_process_dequeue);
 | |
| 
 | |
| void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars,
 | |
| 			       u32 backlog)
 | |
| {
 | |
| 	psched_time_t qdelay = 0;	/* in pschedtime */
 | |
| 	psched_time_t qdelay_old = 0;	/* in pschedtime */
 | |
| 	s64 delta = 0;		/* determines the change in probability */
 | |
| 	u64 oldprob;
 | |
| 	u64 alpha, beta;
 | |
| 	u32 power;
 | |
| 	bool update_prob = true;
 | |
| 
 | |
| 	if (params->dq_rate_estimator) {
 | |
| 		qdelay_old = vars->qdelay;
 | |
| 		vars->qdelay_old = vars->qdelay;
 | |
| 
 | |
| 		if (vars->avg_dq_rate > 0)
 | |
| 			qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate;
 | |
| 		else
 | |
| 			qdelay = 0;
 | |
| 	} else {
 | |
| 		qdelay = vars->qdelay;
 | |
| 		qdelay_old = vars->qdelay_old;
 | |
| 	}
 | |
| 
 | |
| 	/* If qdelay is zero and backlog is not, it means backlog is very small,
 | |
| 	 * so we do not update probabilty in this round.
 | |
| 	 */
 | |
| 	if (qdelay == 0 && backlog != 0)
 | |
| 		update_prob = false;
 | |
| 
 | |
| 	/* In the algorithm, alpha and beta are between 0 and 2 with typical
 | |
| 	 * value for alpha as 0.125. In this implementation, we use values 0-32
 | |
| 	 * passed from user space to represent this. Also, alpha and beta have
 | |
| 	 * unit of HZ and need to be scaled before they can used to update
 | |
| 	 * probability. alpha/beta are updated locally below by scaling down
 | |
| 	 * by 16 to come to 0-2 range.
 | |
| 	 */
 | |
| 	alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
 | |
| 	beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
 | |
| 
 | |
| 	/* We scale alpha and beta differently depending on how heavy the
 | |
| 	 * congestion is. Please see RFC 8033 for details.
 | |
| 	 */
 | |
| 	if (vars->prob < MAX_PROB / 10) {
 | |
| 		alpha >>= 1;
 | |
| 		beta >>= 1;
 | |
| 
 | |
| 		power = 100;
 | |
| 		while (vars->prob < div_u64(MAX_PROB, power) &&
 | |
| 		       power <= 1000000) {
 | |
| 			alpha >>= 2;
 | |
| 			beta >>= 2;
 | |
| 			power *= 10;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* alpha and beta should be between 0 and 32, in multiples of 1/16 */
 | |
| 	delta += alpha * (qdelay - params->target);
 | |
| 	delta += beta * (qdelay - qdelay_old);
 | |
| 
 | |
| 	oldprob = vars->prob;
 | |
| 
 | |
| 	/* to ensure we increase probability in steps of no more than 2% */
 | |
| 	if (delta > (s64)(MAX_PROB / (100 / 2)) &&
 | |
| 	    vars->prob >= MAX_PROB / 10)
 | |
| 		delta = (MAX_PROB / 100) * 2;
 | |
| 
 | |
| 	/* Non-linear drop:
 | |
| 	 * Tune drop probability to increase quickly for high delays(>= 250ms)
 | |
| 	 * 250ms is derived through experiments and provides error protection
 | |
| 	 */
 | |
| 
 | |
| 	if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
 | |
| 		delta += MAX_PROB / (100 / 2);
 | |
| 
 | |
| 	vars->prob += delta;
 | |
| 
 | |
| 	if (delta > 0) {
 | |
| 		/* prevent overflow */
 | |
| 		if (vars->prob < oldprob) {
 | |
| 			vars->prob = MAX_PROB;
 | |
| 			/* Prevent normalization error. If probability is at
 | |
| 			 * maximum value already, we normalize it here, and
 | |
| 			 * skip the check to do a non-linear drop in the next
 | |
| 			 * section.
 | |
| 			 */
 | |
| 			update_prob = false;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* prevent underflow */
 | |
| 		if (vars->prob > oldprob)
 | |
| 			vars->prob = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Non-linear drop in probability: Reduce drop probability quickly if
 | |
| 	 * delay is 0 for 2 consecutive Tupdate periods.
 | |
| 	 */
 | |
| 
 | |
| 	if (qdelay == 0 && qdelay_old == 0 && update_prob)
 | |
| 		/* Reduce drop probability to 98.4% */
 | |
| 		vars->prob -= vars->prob / 64;
 | |
| 
 | |
| 	vars->qdelay = qdelay;
 | |
| 	vars->backlog_old = backlog;
 | |
| 
 | |
| 	/* We restart the measurement cycle if the following conditions are met
 | |
| 	 * 1. If the delay has been low for 2 consecutive Tupdate periods
 | |
| 	 * 2. Calculated drop probability is zero
 | |
| 	 * 3. If average dq_rate_estimator is enabled, we have at least one
 | |
| 	 *    estimate for the avg_dq_rate ie., is a non-zero value
 | |
| 	 */
 | |
| 	if ((vars->qdelay < params->target / 2) &&
 | |
| 	    (vars->qdelay_old < params->target / 2) &&
 | |
| 	    vars->prob == 0 &&
 | |
| 	    (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) {
 | |
| 		pie_vars_init(vars);
 | |
| 	}
 | |
| 
 | |
| 	if (!params->dq_rate_estimator)
 | |
| 		vars->qdelay_old = qdelay;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(pie_calculate_probability);
 | |
| 
 | |
| static void pie_timer(struct timer_list *t)
 | |
| {
 | |
| 	struct pie_sched_data *q = from_timer(q, t, adapt_timer);
 | |
| 	struct Qdisc *sch = q->sch;
 | |
| 	spinlock_t *root_lock = qdisc_lock(qdisc_root_sleeping(sch));
 | |
| 
 | |
| 	spin_lock(root_lock);
 | |
| 	pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog);
 | |
| 
 | |
| 	/* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
 | |
| 	if (q->params.tupdate)
 | |
| 		mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
 | |
| 	spin_unlock(root_lock);
 | |
| }
 | |
| 
 | |
| static int pie_init(struct Qdisc *sch, struct nlattr *opt,
 | |
| 		    struct netlink_ext_ack *extack)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	pie_params_init(&q->params);
 | |
| 	pie_vars_init(&q->vars);
 | |
| 	sch->limit = q->params.limit;
 | |
| 
 | |
| 	q->sch = sch;
 | |
| 	timer_setup(&q->adapt_timer, pie_timer, 0);
 | |
| 
 | |
| 	if (opt) {
 | |
| 		int err = pie_change(sch, opt, extack);
 | |
| 
 | |
| 		if (err)
 | |
| 			return err;
 | |
| 	}
 | |
| 
 | |
| 	mod_timer(&q->adapt_timer, jiffies + HZ / 2);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 	struct nlattr *opts;
 | |
| 
 | |
| 	opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
 | |
| 	if (!opts)
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	/* convert target from pschedtime to us */
 | |
| 	if (nla_put_u32(skb, TCA_PIE_TARGET,
 | |
| 			((u32)PSCHED_TICKS2NS(q->params.target)) /
 | |
| 			NSEC_PER_USEC) ||
 | |
| 	    nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
 | |
| 	    nla_put_u32(skb, TCA_PIE_TUPDATE,
 | |
| 			jiffies_to_usecs(q->params.tupdate)) ||
 | |
| 	    nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
 | |
| 	    nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
 | |
| 	    nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
 | |
| 	    nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode) ||
 | |
| 	    nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR,
 | |
| 			q->params.dq_rate_estimator))
 | |
| 		goto nla_put_failure;
 | |
| 
 | |
| 	return nla_nest_end(skb, opts);
 | |
| 
 | |
| nla_put_failure:
 | |
| 	nla_nest_cancel(skb, opts);
 | |
| 	return -1;
 | |
| }
 | |
| 
 | |
| static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 	struct tc_pie_xstats st = {
 | |
| 		.prob		= q->vars.prob << BITS_PER_BYTE,
 | |
| 		.delay		= ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
 | |
| 				   NSEC_PER_USEC,
 | |
| 		.packets_in	= q->stats.packets_in,
 | |
| 		.overlimit	= q->stats.overlimit,
 | |
| 		.maxq		= q->stats.maxq,
 | |
| 		.dropped	= q->stats.dropped,
 | |
| 		.ecn_mark	= q->stats.ecn_mark,
 | |
| 	};
 | |
| 
 | |
| 	/* avg_dq_rate is only valid if dq_rate_estimator is enabled */
 | |
| 	st.dq_rate_estimating = q->params.dq_rate_estimator;
 | |
| 
 | |
| 	/* unscale and return dq_rate in bytes per sec */
 | |
| 	if (q->params.dq_rate_estimator)
 | |
| 		st.avg_dq_rate = q->vars.avg_dq_rate *
 | |
| 				 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE;
 | |
| 
 | |
| 	return gnet_stats_copy_app(d, &st, sizeof(st));
 | |
| }
 | |
| 
 | |
| static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 	struct sk_buff *skb = qdisc_dequeue_head(sch);
 | |
| 
 | |
| 	if (!skb)
 | |
| 		return NULL;
 | |
| 
 | |
| 	pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog);
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| static void pie_reset(struct Qdisc *sch)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	qdisc_reset_queue(sch);
 | |
| 	pie_vars_init(&q->vars);
 | |
| }
 | |
| 
 | |
| static void pie_destroy(struct Qdisc *sch)
 | |
| {
 | |
| 	struct pie_sched_data *q = qdisc_priv(sch);
 | |
| 
 | |
| 	q->params.tupdate = 0;
 | |
| 	del_timer_sync(&q->adapt_timer);
 | |
| }
 | |
| 
 | |
| static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
 | |
| 	.id		= "pie",
 | |
| 	.priv_size	= sizeof(struct pie_sched_data),
 | |
| 	.enqueue	= pie_qdisc_enqueue,
 | |
| 	.dequeue	= pie_qdisc_dequeue,
 | |
| 	.peek		= qdisc_peek_dequeued,
 | |
| 	.init		= pie_init,
 | |
| 	.destroy	= pie_destroy,
 | |
| 	.reset		= pie_reset,
 | |
| 	.change		= pie_change,
 | |
| 	.dump		= pie_dump,
 | |
| 	.dump_stats	= pie_dump_stats,
 | |
| 	.owner		= THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static int __init pie_module_init(void)
 | |
| {
 | |
| 	return register_qdisc(&pie_qdisc_ops);
 | |
| }
 | |
| 
 | |
| static void __exit pie_module_exit(void)
 | |
| {
 | |
| 	unregister_qdisc(&pie_qdisc_ops);
 | |
| }
 | |
| 
 | |
| module_init(pie_module_init);
 | |
| module_exit(pie_module_exit);
 | |
| 
 | |
| MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
 | |
| MODULE_AUTHOR("Vijay Subramanian");
 | |
| MODULE_AUTHOR("Mythili Prabhu");
 | |
| MODULE_LICENSE("GPL");
 |