mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/torvalds/linux
				synced 2025-11-04 16:52:06 +10:00 
			
		
		
		
	There have been various issues and limitations with the way perf uses
(task) contexts to track events. Most notable is the single hardware
PMU task context, which has resulted in a number of yucky things (both
proposed and merged).
Notably:
 - HW breakpoint PMU
 - ARM big.little PMU / Intel ADL PMU
 - Intel Branch Monitoring PMU
 - AMD IBS PMU
 - S390 cpum_cf PMU
 - PowerPC trace_imc PMU
*Current design:*
Currently we have a per task and per cpu perf_event_contexts:
  task_struct::perf_events_ctxp[] <-> perf_event_context <-> perf_cpu_context
       ^                                 |    ^     |           ^
       `---------------------------------'    |     `--> pmu ---'
                                              v           ^
                                         perf_event ------'
Each task has an array of pointers to a perf_event_context. Each
perf_event_context has a direct relation to a PMU and a group of
events for that PMU. The task related perf_event_context's have a
pointer back to that task.
Each PMU has a per-cpu pointer to a per-cpu perf_cpu_context, which
includes a perf_event_context, which again has a direct relation to
that PMU, and a group of events for that PMU.
The perf_cpu_context also tracks which task context is currently
associated with that CPU and includes a few other things like the
hrtimer for rotation etc.
Each perf_event is then associated with its PMU and one
perf_event_context.
*Proposed design:*
New design proposed by this patch reduce to a single task context and
a single CPU context but adds some intermediate data-structures:
  task_struct::perf_event_ctxp -> perf_event_context <- perf_cpu_context
       ^                           |   ^ ^
       `---------------------------'   | |
                                       | |    perf_cpu_pmu_context <--.
                                       | `----.    ^                  |
                                       |      |    |                  |
                                       |      v    v                  |
                                       | ,--> perf_event_pmu_context  |
                                       | |                            |
                                       | |                            |
                                       v v                            |
                                  perf_event ---> pmu ----------------'
With the new design, perf_event_context will hold all events for all
pmus in the (respective pinned/flexible) rbtrees. This can be achieved
by adding pmu to rbtree key:
  {cpu, pmu, cgroup, group_index}
Each perf_event_context carries a list of perf_event_pmu_context which
is used to hold per-pmu-per-context state. For example, it keeps track
of currently active events for that pmu, a pmu specific task_ctx_data,
a flag to tell whether rotation is required or not etc.
Additionally, perf_cpu_pmu_context is used to hold per-pmu-per-cpu
state like hrtimer details to drive the event rotation, a pointer to
perf_event_pmu_context of currently running task and some other
ancillary information.
Each perf_event is associated to it's pmu, perf_event_context and
perf_event_pmu_context.
Further optimizations to current implementation are possible. For
example, ctx_resched() can be optimized to reschedule only single pmu
events.
Much thanks to Ravi for picking this up and pushing it towards
completion.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008062424.313-1-ravi.bangoria@amd.com
		
	
			
		
			
				
	
	
		
			2624 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2624 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 * Performance event support - powerpc architecture code
 | 
						|
 *
 | 
						|
 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
 | 
						|
 */
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/sched/clock.h>
 | 
						|
#include <linux/perf_event.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/hardirq.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <asm/reg.h>
 | 
						|
#include <asm/pmc.h>
 | 
						|
#include <asm/machdep.h>
 | 
						|
#include <asm/firmware.h>
 | 
						|
#include <asm/ptrace.h>
 | 
						|
#include <asm/code-patching.h>
 | 
						|
#include <asm/hw_irq.h>
 | 
						|
#include <asm/interrupt.h>
 | 
						|
 | 
						|
#ifdef CONFIG_PPC64
 | 
						|
#include "internal.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#define BHRB_MAX_ENTRIES	32
 | 
						|
#define BHRB_TARGET		0x0000000000000002
 | 
						|
#define BHRB_PREDICTION		0x0000000000000001
 | 
						|
#define BHRB_EA			0xFFFFFFFFFFFFFFFCUL
 | 
						|
 | 
						|
struct cpu_hw_events {
 | 
						|
	int n_events;
 | 
						|
	int n_percpu;
 | 
						|
	int disabled;
 | 
						|
	int n_added;
 | 
						|
	int n_limited;
 | 
						|
	u8  pmcs_enabled;
 | 
						|
	struct perf_event *event[MAX_HWEVENTS];
 | 
						|
	u64 events[MAX_HWEVENTS];
 | 
						|
	unsigned int flags[MAX_HWEVENTS];
 | 
						|
	struct mmcr_regs mmcr;
 | 
						|
	struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
 | 
						|
	u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
 | 
						|
	u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 | 
						|
	unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 | 
						|
	unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
 | 
						|
 | 
						|
	unsigned int txn_flags;
 | 
						|
	int n_txn_start;
 | 
						|
 | 
						|
	/* BHRB bits */
 | 
						|
	u64				bhrb_filter;	/* BHRB HW branch filter */
 | 
						|
	unsigned int			bhrb_users;
 | 
						|
	void				*bhrb_context;
 | 
						|
	struct	perf_branch_stack	bhrb_stack;
 | 
						|
	struct	perf_branch_entry	bhrb_entries[BHRB_MAX_ENTRIES];
 | 
						|
	u64				ic_init;
 | 
						|
 | 
						|
	/* Store the PMC values */
 | 
						|
	unsigned long pmcs[MAX_HWEVENTS];
 | 
						|
};
 | 
						|
 | 
						|
static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
 | 
						|
 | 
						|
static struct power_pmu *ppmu;
 | 
						|
 | 
						|
/*
 | 
						|
 * Normally, to ignore kernel events we set the FCS (freeze counters
 | 
						|
 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
 | 
						|
 * hypervisor bit set in the MSR, or if we are running on a processor
 | 
						|
 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
 | 
						|
 * then we need to use the FCHV bit to ignore kernel events.
 | 
						|
 */
 | 
						|
static unsigned int freeze_events_kernel = MMCR0_FCS;
 | 
						|
 | 
						|
/*
 | 
						|
 * 32-bit doesn't have MMCRA but does have an MMCR2,
 | 
						|
 * and a few other names are different.
 | 
						|
 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
 | 
						|
 * Define them as zero knowing that any code path accessing
 | 
						|
 * these registers (via mtspr/mfspr) are done under ppmu flag
 | 
						|
 * check for PPMU_ARCH_31 and we will not enter that code path
 | 
						|
 * for 32-bit.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_PPC32
 | 
						|
 | 
						|
#define MMCR0_FCHV		0
 | 
						|
#define MMCR0_PMCjCE		MMCR0_PMCnCE
 | 
						|
#define MMCR0_FC56		0
 | 
						|
#define MMCR0_PMAO		0
 | 
						|
#define MMCR0_EBE		0
 | 
						|
#define MMCR0_BHRBA		0
 | 
						|
#define MMCR0_PMCC		0
 | 
						|
#define MMCR0_PMCC_U6		0
 | 
						|
 | 
						|
#define SPRN_MMCRA		SPRN_MMCR2
 | 
						|
#define SPRN_MMCR3		0
 | 
						|
#define SPRN_SIER2		0
 | 
						|
#define SPRN_SIER3		0
 | 
						|
#define MMCRA_SAMPLE_ENABLE	0
 | 
						|
#define MMCRA_BHRB_DISABLE     0
 | 
						|
#define MMCR0_PMCCEXT		0
 | 
						|
 | 
						|
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
 | 
						|
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
static inline void perf_read_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	regs->result = 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int siar_valid(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool is_ebb_event(struct perf_event *event) { return false; }
 | 
						|
static int ebb_event_check(struct perf_event *event) { return 0; }
 | 
						|
static void ebb_event_add(struct perf_event *event) { }
 | 
						|
static void ebb_switch_out(unsigned long mmcr0) { }
 | 
						|
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 | 
						|
{
 | 
						|
	return cpuhw->mmcr.mmcr0;
 | 
						|
}
 | 
						|
 | 
						|
static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 | 
						|
static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 | 
						|
static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) {}
 | 
						|
static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
 | 
						|
static void pmao_restore_workaround(bool ebb) { }
 | 
						|
#endif /* CONFIG_PPC32 */
 | 
						|
 | 
						|
bool is_sier_available(void)
 | 
						|
{
 | 
						|
	if (!ppmu)
 | 
						|
		return false;
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_HAS_SIER)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return PMC value corresponding to the
 | 
						|
 * index passed.
 | 
						|
 */
 | 
						|
unsigned long get_pmcs_ext_regs(int idx)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
 | 
						|
	return cpuhw->pmcs[idx];
 | 
						|
}
 | 
						|
 | 
						|
static bool regs_use_siar(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * When we take a performance monitor exception the regs are setup
 | 
						|
	 * using perf_read_regs() which overloads some fields, in particular
 | 
						|
	 * regs->result to tell us whether to use SIAR.
 | 
						|
	 *
 | 
						|
	 * However if the regs are from another exception, eg. a syscall, then
 | 
						|
	 * they have not been setup using perf_read_regs() and so regs->result
 | 
						|
	 * is something random.
 | 
						|
	 */
 | 
						|
	return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Things that are specific to 64-bit implementations.
 | 
						|
 */
 | 
						|
#ifdef CONFIG_PPC64
 | 
						|
 | 
						|
static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long mmcra = regs->dsisr;
 | 
						|
 | 
						|
	if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 | 
						|
		unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 | 
						|
		if (slot > 1)
 | 
						|
			return 4 * (slot - 1);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The user wants a data address recorded.
 | 
						|
 * If we're not doing instruction sampling, give them the SDAR
 | 
						|
 * (sampled data address).  If we are doing instruction sampling, then
 | 
						|
 * only give them the SDAR if it corresponds to the instruction
 | 
						|
 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 | 
						|
 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 | 
						|
 */
 | 
						|
static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
 | 
						|
{
 | 
						|
	unsigned long mmcra = regs->dsisr;
 | 
						|
	bool sdar_valid;
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_HAS_SIER)
 | 
						|
		sdar_valid = regs->dar & SIER_SDAR_VALID;
 | 
						|
	else {
 | 
						|
		unsigned long sdsync;
 | 
						|
 | 
						|
		if (ppmu->flags & PPMU_SIAR_VALID)
 | 
						|
			sdsync = POWER7P_MMCRA_SDAR_VALID;
 | 
						|
		else if (ppmu->flags & PPMU_ALT_SIPR)
 | 
						|
			sdsync = POWER6_MMCRA_SDSYNC;
 | 
						|
		else if (ppmu->flags & PPMU_NO_SIAR)
 | 
						|
			sdsync = MMCRA_SAMPLE_ENABLE;
 | 
						|
		else
 | 
						|
			sdsync = MMCRA_SDSYNC;
 | 
						|
 | 
						|
		sdar_valid = mmcra & sdsync;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 | 
						|
		*addrp = mfspr(SPRN_SDAR);
 | 
						|
 | 
						|
	if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
 | 
						|
		*addrp = 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool regs_sihv(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long sihv = MMCRA_SIHV;
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_HAS_SIER)
 | 
						|
		return !!(regs->dar & SIER_SIHV);
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_ALT_SIPR)
 | 
						|
		sihv = POWER6_MMCRA_SIHV;
 | 
						|
 | 
						|
	return !!(regs->dsisr & sihv);
 | 
						|
}
 | 
						|
 | 
						|
static bool regs_sipr(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long sipr = MMCRA_SIPR;
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_HAS_SIER)
 | 
						|
		return !!(regs->dar & SIER_SIPR);
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_ALT_SIPR)
 | 
						|
		sipr = POWER6_MMCRA_SIPR;
 | 
						|
 | 
						|
	return !!(regs->dsisr & sipr);
 | 
						|
}
 | 
						|
 | 
						|
static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	if (regs->msr & MSR_PR)
 | 
						|
		return PERF_RECORD_MISC_USER;
 | 
						|
	if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 | 
						|
		return PERF_RECORD_MISC_HYPERVISOR;
 | 
						|
	return PERF_RECORD_MISC_KERNEL;
 | 
						|
}
 | 
						|
 | 
						|
static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	bool use_siar = regs_use_siar(regs);
 | 
						|
	unsigned long mmcra = regs->dsisr;
 | 
						|
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 | 
						|
 | 
						|
	if (!use_siar)
 | 
						|
		return perf_flags_from_msr(regs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check the address in SIAR to identify the
 | 
						|
	 * privilege levels since the SIER[MSR_HV, MSR_PR]
 | 
						|
	 * bits are not set for marked events in power10
 | 
						|
	 * DD1.
 | 
						|
	 */
 | 
						|
	if (marked && (ppmu->flags & PPMU_P10_DD1)) {
 | 
						|
		unsigned long siar = mfspr(SPRN_SIAR);
 | 
						|
		if (siar) {
 | 
						|
			if (is_kernel_addr(siar))
 | 
						|
				return PERF_RECORD_MISC_KERNEL;
 | 
						|
			return PERF_RECORD_MISC_USER;
 | 
						|
		} else {
 | 
						|
			if (is_kernel_addr(regs->nip))
 | 
						|
				return PERF_RECORD_MISC_KERNEL;
 | 
						|
			return PERF_RECORD_MISC_USER;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we don't have flags in MMCRA, rather than using
 | 
						|
	 * the MSR, we intuit the flags from the address in
 | 
						|
	 * SIAR which should give slightly more reliable
 | 
						|
	 * results
 | 
						|
	 */
 | 
						|
	if (ppmu->flags & PPMU_NO_SIPR) {
 | 
						|
		unsigned long siar = mfspr(SPRN_SIAR);
 | 
						|
		if (is_kernel_addr(siar))
 | 
						|
			return PERF_RECORD_MISC_KERNEL;
 | 
						|
		return PERF_RECORD_MISC_USER;
 | 
						|
	}
 | 
						|
 | 
						|
	/* PR has priority over HV, so order below is important */
 | 
						|
	if (regs_sipr(regs))
 | 
						|
		return PERF_RECORD_MISC_USER;
 | 
						|
 | 
						|
	if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 | 
						|
		return PERF_RECORD_MISC_HYPERVISOR;
 | 
						|
 | 
						|
	return PERF_RECORD_MISC_KERNEL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Overload regs->dsisr to store MMCRA so we only need to read it once
 | 
						|
 * on each interrupt.
 | 
						|
 * Overload regs->dar to store SIER if we have it.
 | 
						|
 * Overload regs->result to specify whether we should use the MSR (result
 | 
						|
 * is zero) or the SIAR (result is non zero).
 | 
						|
 */
 | 
						|
static inline void perf_read_regs(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long mmcra = mfspr(SPRN_MMCRA);
 | 
						|
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 | 
						|
	int use_siar;
 | 
						|
 | 
						|
	regs->dsisr = mmcra;
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_HAS_SIER)
 | 
						|
		regs->dar = mfspr(SPRN_SIER);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this isn't a PMU exception (eg a software event) the SIAR is
 | 
						|
	 * not valid. Use pt_regs.
 | 
						|
	 *
 | 
						|
	 * If it is a marked event use the SIAR.
 | 
						|
	 *
 | 
						|
	 * If the PMU doesn't update the SIAR for non marked events use
 | 
						|
	 * pt_regs.
 | 
						|
	 *
 | 
						|
	 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
 | 
						|
	 * issue with regs_sipr not being in synch with SIAR in interrupt entry
 | 
						|
	 * and return sequences, which can result in regs_sipr being true for
 | 
						|
	 * kernel interrupts and SIAR, which has the effect of causing samples
 | 
						|
	 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
 | 
						|
	 * interrupt entry/exit.
 | 
						|
	 *
 | 
						|
	 * If the PMU has HV/PR flags then check to see if they
 | 
						|
	 * place the exception in userspace. If so, use pt_regs. In
 | 
						|
	 * continuous sampling mode the SIAR and the PMU exception are
 | 
						|
	 * not synchronised, so they may be many instructions apart.
 | 
						|
	 * This can result in confusing backtraces. We still want
 | 
						|
	 * hypervisor samples as well as samples in the kernel with
 | 
						|
	 * interrupts off hence the userspace check.
 | 
						|
	 */
 | 
						|
	if (TRAP(regs) != INTERRUPT_PERFMON)
 | 
						|
		use_siar = 0;
 | 
						|
	else if ((ppmu->flags & PPMU_NO_SIAR))
 | 
						|
		use_siar = 0;
 | 
						|
	else if (marked)
 | 
						|
		use_siar = 1;
 | 
						|
	else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 | 
						|
		use_siar = 0;
 | 
						|
	else if (!user_mode(regs))
 | 
						|
		use_siar = 1;
 | 
						|
	else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 | 
						|
		use_siar = 0;
 | 
						|
	else
 | 
						|
		use_siar = 1;
 | 
						|
 | 
						|
	regs->result = use_siar;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 | 
						|
 * must be sampled only if the SIAR-valid bit is set.
 | 
						|
 *
 | 
						|
 * For unmarked instructions and for processors that don't have the SIAR-Valid
 | 
						|
 * bit, assume that SIAR is valid.
 | 
						|
 */
 | 
						|
static inline int siar_valid(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long mmcra = regs->dsisr;
 | 
						|
	int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 | 
						|
 | 
						|
	if (marked) {
 | 
						|
		/*
 | 
						|
		 * SIER[SIAR_VALID] is not set for some
 | 
						|
		 * marked events on power10 DD1, so drop
 | 
						|
		 * the check for SIER[SIAR_VALID] and return true.
 | 
						|
		 */
 | 
						|
		if (ppmu->flags & PPMU_P10_DD1)
 | 
						|
			return 0x1;
 | 
						|
		else if (ppmu->flags & PPMU_HAS_SIER)
 | 
						|
			return regs->dar & SIER_SIAR_VALID;
 | 
						|
 | 
						|
		if (ppmu->flags & PPMU_SIAR_VALID)
 | 
						|
			return mmcra & POWER7P_MMCRA_SIAR_VALID;
 | 
						|
	}
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Reset all possible BHRB entries */
 | 
						|
static void power_pmu_bhrb_reset(void)
 | 
						|
{
 | 
						|
	asm volatile(PPC_CLRBHRB);
 | 
						|
}
 | 
						|
 | 
						|
static void power_pmu_bhrb_enable(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
 | 
						|
	if (!ppmu->bhrb_nr)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Clear BHRB if we changed task context to avoid data leaks */
 | 
						|
	if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 | 
						|
		power_pmu_bhrb_reset();
 | 
						|
		cpuhw->bhrb_context = event->ctx;
 | 
						|
	}
 | 
						|
	cpuhw->bhrb_users++;
 | 
						|
	perf_sched_cb_inc(event->pmu);
 | 
						|
}
 | 
						|
 | 
						|
static void power_pmu_bhrb_disable(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
 | 
						|
	if (!ppmu->bhrb_nr)
 | 
						|
		return;
 | 
						|
 | 
						|
	WARN_ON_ONCE(!cpuhw->bhrb_users);
 | 
						|
	cpuhw->bhrb_users--;
 | 
						|
	perf_sched_cb_dec(event->pmu);
 | 
						|
 | 
						|
	if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 | 
						|
		/* BHRB cannot be turned off when other
 | 
						|
		 * events are active on the PMU.
 | 
						|
		 */
 | 
						|
 | 
						|
		/* avoid stale pointer */
 | 
						|
		cpuhw->bhrb_context = NULL;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Called from ctxsw to prevent one process's branch entries to
 | 
						|
 * mingle with the other process's entries during context switch.
 | 
						|
 */
 | 
						|
static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
 | 
						|
{
 | 
						|
	if (!ppmu->bhrb_nr)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (sched_in)
 | 
						|
		power_pmu_bhrb_reset();
 | 
						|
}
 | 
						|
/* Calculate the to address for a branch */
 | 
						|
static __u64 power_pmu_bhrb_to(u64 addr)
 | 
						|
{
 | 
						|
	unsigned int instr;
 | 
						|
	__u64 target;
 | 
						|
 | 
						|
	if (is_kernel_addr(addr)) {
 | 
						|
		if (copy_from_kernel_nofault(&instr, (void *)addr,
 | 
						|
				sizeof(instr)))
 | 
						|
			return 0;
 | 
						|
 | 
						|
		return branch_target(&instr);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Userspace: need copy instruction here then translate it */
 | 
						|
	if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
 | 
						|
			sizeof(instr)))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	target = branch_target(&instr);
 | 
						|
	if ((!target) || (instr & BRANCH_ABSOLUTE))
 | 
						|
		return target;
 | 
						|
 | 
						|
	/* Translate relative branch target from kernel to user address */
 | 
						|
	return target - (unsigned long)&instr + addr;
 | 
						|
}
 | 
						|
 | 
						|
/* Processing BHRB entries */
 | 
						|
static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
 | 
						|
{
 | 
						|
	u64 val;
 | 
						|
	u64 addr;
 | 
						|
	int r_index, u_index, pred;
 | 
						|
 | 
						|
	r_index = 0;
 | 
						|
	u_index = 0;
 | 
						|
	while (r_index < ppmu->bhrb_nr) {
 | 
						|
		/* Assembly read function */
 | 
						|
		val = read_bhrb(r_index++);
 | 
						|
		if (!val)
 | 
						|
			/* Terminal marker: End of valid BHRB entries */
 | 
						|
			break;
 | 
						|
		else {
 | 
						|
			addr = val & BHRB_EA;
 | 
						|
			pred = val & BHRB_PREDICTION;
 | 
						|
 | 
						|
			if (!addr)
 | 
						|
				/* invalid entry */
 | 
						|
				continue;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * BHRB rolling buffer could very much contain the kernel
 | 
						|
			 * addresses at this point. Check the privileges before
 | 
						|
			 * exporting it to userspace (avoid exposure of regions
 | 
						|
			 * where we could have speculative execution)
 | 
						|
			 * Incase of ISA v3.1, BHRB will capture only user-space
 | 
						|
			 * addresses, hence include a check before filtering code
 | 
						|
			 */
 | 
						|
			if (!(ppmu->flags & PPMU_ARCH_31) &&
 | 
						|
			    is_kernel_addr(addr) && event->attr.exclude_kernel)
 | 
						|
				continue;
 | 
						|
 | 
						|
			/* Branches are read most recent first (ie. mfbhrb 0 is
 | 
						|
			 * the most recent branch).
 | 
						|
			 * There are two types of valid entries:
 | 
						|
			 * 1) a target entry which is the to address of a
 | 
						|
			 *    computed goto like a blr,bctr,btar.  The next
 | 
						|
			 *    entry read from the bhrb will be branch
 | 
						|
			 *    corresponding to this target (ie. the actual
 | 
						|
			 *    blr/bctr/btar instruction).
 | 
						|
			 * 2) a from address which is an actual branch.  If a
 | 
						|
			 *    target entry proceeds this, then this is the
 | 
						|
			 *    matching branch for that target.  If this is not
 | 
						|
			 *    following a target entry, then this is a branch
 | 
						|
			 *    where the target is given as an immediate field
 | 
						|
			 *    in the instruction (ie. an i or b form branch).
 | 
						|
			 *    In this case we need to read the instruction from
 | 
						|
			 *    memory to determine the target/to address.
 | 
						|
			 */
 | 
						|
 | 
						|
			if (val & BHRB_TARGET) {
 | 
						|
				/* Target branches use two entries
 | 
						|
				 * (ie. computed gotos/XL form)
 | 
						|
				 */
 | 
						|
				cpuhw->bhrb_entries[u_index].to = addr;
 | 
						|
				cpuhw->bhrb_entries[u_index].mispred = pred;
 | 
						|
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 | 
						|
 | 
						|
				/* Get from address in next entry */
 | 
						|
				val = read_bhrb(r_index++);
 | 
						|
				addr = val & BHRB_EA;
 | 
						|
				if (val & BHRB_TARGET) {
 | 
						|
					/* Shouldn't have two targets in a
 | 
						|
					   row.. Reset index and try again */
 | 
						|
					r_index--;
 | 
						|
					addr = 0;
 | 
						|
				}
 | 
						|
				cpuhw->bhrb_entries[u_index].from = addr;
 | 
						|
			} else {
 | 
						|
				/* Branches to immediate field 
 | 
						|
				   (ie I or B form) */
 | 
						|
				cpuhw->bhrb_entries[u_index].from = addr;
 | 
						|
				cpuhw->bhrb_entries[u_index].to =
 | 
						|
					power_pmu_bhrb_to(addr);
 | 
						|
				cpuhw->bhrb_entries[u_index].mispred = pred;
 | 
						|
				cpuhw->bhrb_entries[u_index].predicted = ~pred;
 | 
						|
			}
 | 
						|
			u_index++;
 | 
						|
 | 
						|
		}
 | 
						|
	}
 | 
						|
	cpuhw->bhrb_stack.nr = u_index;
 | 
						|
	cpuhw->bhrb_stack.hw_idx = -1ULL;
 | 
						|
	return;
 | 
						|
}
 | 
						|
 | 
						|
static bool is_ebb_event(struct perf_event *event)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * This could be a per-PMU callback, but we'd rather avoid the cost. We
 | 
						|
	 * check that the PMU supports EBB, meaning those that don't can still
 | 
						|
	 * use bit 63 of the event code for something else if they wish.
 | 
						|
	 */
 | 
						|
	return (ppmu->flags & PPMU_ARCH_207S) &&
 | 
						|
	       ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 | 
						|
}
 | 
						|
 | 
						|
static int ebb_event_check(struct perf_event *event)
 | 
						|
{
 | 
						|
	struct perf_event *leader = event->group_leader;
 | 
						|
 | 
						|
	/* Event and group leader must agree on EBB */
 | 
						|
	if (is_ebb_event(leader) != is_ebb_event(event))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (is_ebb_event(event)) {
 | 
						|
		if (!(event->attach_state & PERF_ATTACH_TASK))
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		if (!leader->attr.pinned || !leader->attr.exclusive)
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		if (event->attr.freq ||
 | 
						|
		    event->attr.inherit ||
 | 
						|
		    event->attr.sample_type ||
 | 
						|
		    event->attr.sample_period ||
 | 
						|
		    event->attr.enable_on_exec)
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void ebb_event_add(struct perf_event *event)
 | 
						|
{
 | 
						|
	if (!is_ebb_event(event) || current->thread.used_ebb)
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * IFF this is the first time we've added an EBB event, set
 | 
						|
	 * PMXE in the user MMCR0 so we can detect when it's cleared by
 | 
						|
	 * userspace. We need this so that we can context switch while
 | 
						|
	 * userspace is in the EBB handler (where PMXE is 0).
 | 
						|
	 */
 | 
						|
	current->thread.used_ebb = 1;
 | 
						|
	current->thread.mmcr0 |= MMCR0_PMXE;
 | 
						|
}
 | 
						|
 | 
						|
static void ebb_switch_out(unsigned long mmcr0)
 | 
						|
{
 | 
						|
	if (!(mmcr0 & MMCR0_EBE))
 | 
						|
		return;
 | 
						|
 | 
						|
	current->thread.siar  = mfspr(SPRN_SIAR);
 | 
						|
	current->thread.sier  = mfspr(SPRN_SIER);
 | 
						|
	current->thread.sdar  = mfspr(SPRN_SDAR);
 | 
						|
	current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 | 
						|
	current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 | 
						|
	if (ppmu->flags & PPMU_ARCH_31) {
 | 
						|
		current->thread.mmcr3 = mfspr(SPRN_MMCR3);
 | 
						|
		current->thread.sier2 = mfspr(SPRN_SIER2);
 | 
						|
		current->thread.sier3 = mfspr(SPRN_SIER3);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 | 
						|
{
 | 
						|
	unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
 | 
						|
 | 
						|
	if (!ebb)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 | 
						|
	mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 | 
						|
	 * with pmao_restore_workaround() because we may add PMAO but we never
 | 
						|
	 * clear it here.
 | 
						|
	 */
 | 
						|
	mmcr0 |= current->thread.mmcr0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Be careful not to set PMXE if userspace had it cleared. This is also
 | 
						|
	 * compatible with pmao_restore_workaround() because it has already
 | 
						|
	 * cleared PMXE and we leave PMAO alone.
 | 
						|
	 */
 | 
						|
	if (!(current->thread.mmcr0 & MMCR0_PMXE))
 | 
						|
		mmcr0 &= ~MMCR0_PMXE;
 | 
						|
 | 
						|
	mtspr(SPRN_SIAR, current->thread.siar);
 | 
						|
	mtspr(SPRN_SIER, current->thread.sier);
 | 
						|
	mtspr(SPRN_SDAR, current->thread.sdar);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Merge the kernel & user values of MMCR2. The semantics we implement
 | 
						|
	 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 | 
						|
	 * but not clear bits. If a task wants to be able to clear bits, ie.
 | 
						|
	 * unfreeze counters, it should not set exclude_xxx in its events and
 | 
						|
	 * instead manage the MMCR2 entirely by itself.
 | 
						|
	 */
 | 
						|
	mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_ARCH_31) {
 | 
						|
		mtspr(SPRN_MMCR3, current->thread.mmcr3);
 | 
						|
		mtspr(SPRN_SIER2, current->thread.sier2);
 | 
						|
		mtspr(SPRN_SIER3, current->thread.sier3);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	return mmcr0;
 | 
						|
}
 | 
						|
 | 
						|
static void pmao_restore_workaround(bool ebb)
 | 
						|
{
 | 
						|
	unsigned pmcs[6];
 | 
						|
 | 
						|
	if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On POWER8E there is a hardware defect which affects the PMU context
 | 
						|
	 * switch logic, ie. power_pmu_disable/enable().
 | 
						|
	 *
 | 
						|
	 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 | 
						|
	 * by the hardware. Sometime later the actual PMU exception is
 | 
						|
	 * delivered.
 | 
						|
	 *
 | 
						|
	 * If we context switch, or simply disable/enable, the PMU prior to the
 | 
						|
	 * exception arriving, the exception will be lost when we clear PMAO.
 | 
						|
	 *
 | 
						|
	 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 | 
						|
	 * set, and this _should_ generate an exception. However because of the
 | 
						|
	 * defect no exception is generated when we write PMAO, and we get
 | 
						|
	 * stuck with no counters counting but no exception delivered.
 | 
						|
	 *
 | 
						|
	 * The workaround is to detect this case and tweak the hardware to
 | 
						|
	 * create another pending PMU exception.
 | 
						|
	 *
 | 
						|
	 * We do that by setting up PMC6 (cycles) for an imminent overflow and
 | 
						|
	 * enabling the PMU. That causes a new exception to be generated in the
 | 
						|
	 * chip, but we don't take it yet because we have interrupts hard
 | 
						|
	 * disabled. We then write back the PMU state as we want it to be seen
 | 
						|
	 * by the exception handler. When we reenable interrupts the exception
 | 
						|
	 * handler will be called and see the correct state.
 | 
						|
	 *
 | 
						|
	 * The logic is the same for EBB, except that the exception is gated by
 | 
						|
	 * us having interrupts hard disabled as well as the fact that we are
 | 
						|
	 * not in userspace. The exception is finally delivered when we return
 | 
						|
	 * to userspace.
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Only if PMAO is set and PMAO_SYNC is clear */
 | 
						|
	if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* If we're doing EBB, only if BESCR[GE] is set */
 | 
						|
	if (ebb && !(current->thread.bescr & BESCR_GE))
 | 
						|
		return;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We are already soft-disabled in power_pmu_enable(). We need to hard
 | 
						|
	 * disable to actually prevent the PMU exception from firing.
 | 
						|
	 */
 | 
						|
	hard_irq_disable();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 | 
						|
	 * Using read/write_pmc() in a for loop adds 12 function calls and
 | 
						|
	 * almost doubles our code size.
 | 
						|
	 */
 | 
						|
	pmcs[0] = mfspr(SPRN_PMC1);
 | 
						|
	pmcs[1] = mfspr(SPRN_PMC2);
 | 
						|
	pmcs[2] = mfspr(SPRN_PMC3);
 | 
						|
	pmcs[3] = mfspr(SPRN_PMC4);
 | 
						|
	pmcs[4] = mfspr(SPRN_PMC5);
 | 
						|
	pmcs[5] = mfspr(SPRN_PMC6);
 | 
						|
 | 
						|
	/* Ensure all freeze bits are unset */
 | 
						|
	mtspr(SPRN_MMCR2, 0);
 | 
						|
 | 
						|
	/* Set up PMC6 to overflow in one cycle */
 | 
						|
	mtspr(SPRN_PMC6, 0x7FFFFFFE);
 | 
						|
 | 
						|
	/* Enable exceptions and unfreeze PMC6 */
 | 
						|
	mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 | 
						|
 | 
						|
	/* Now we need to refreeze and restore the PMCs */
 | 
						|
	mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 | 
						|
 | 
						|
	mtspr(SPRN_PMC1, pmcs[0]);
 | 
						|
	mtspr(SPRN_PMC2, pmcs[1]);
 | 
						|
	mtspr(SPRN_PMC3, pmcs[2]);
 | 
						|
	mtspr(SPRN_PMC4, pmcs[3]);
 | 
						|
	mtspr(SPRN_PMC5, pmcs[4]);
 | 
						|
	mtspr(SPRN_PMC6, pmcs[5]);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If the perf subsystem wants performance monitor interrupts as soon as
 | 
						|
 * possible (e.g., to sample the instruction address and stack chain),
 | 
						|
 * this should return true. The IRQ masking code can then enable MSR[EE]
 | 
						|
 * in some places (e.g., interrupt handlers) that allows PMI interrupts
 | 
						|
 * through to improve accuracy of profiles, at the cost of some performance.
 | 
						|
 *
 | 
						|
 * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
 | 
						|
 * access), but in that case there is no need for prompt PMI handling.
 | 
						|
 *
 | 
						|
 * This currently returns true if any perf counter is being used. It
 | 
						|
 * could possibly return false if only events are being counted rather than
 | 
						|
 * samples being taken, but for now this is good enough.
 | 
						|
 */
 | 
						|
bool power_pmu_wants_prompt_pmi(void)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This could simply test local_paca->pmcregs_in_use if that were not
 | 
						|
	 * under ifdef KVM.
 | 
						|
	 */
 | 
						|
	if (!ppmu)
 | 
						|
		return false;
 | 
						|
 | 
						|
	cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
	return cpuhw->n_events;
 | 
						|
}
 | 
						|
#endif /* CONFIG_PPC64 */
 | 
						|
 | 
						|
static void perf_event_interrupt(struct pt_regs *regs);
 | 
						|
 | 
						|
/*
 | 
						|
 * Read one performance monitor counter (PMC).
 | 
						|
 */
 | 
						|
static unsigned long read_pmc(int idx)
 | 
						|
{
 | 
						|
	unsigned long val;
 | 
						|
 | 
						|
	switch (idx) {
 | 
						|
	case 1:
 | 
						|
		val = mfspr(SPRN_PMC1);
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		val = mfspr(SPRN_PMC2);
 | 
						|
		break;
 | 
						|
	case 3:
 | 
						|
		val = mfspr(SPRN_PMC3);
 | 
						|
		break;
 | 
						|
	case 4:
 | 
						|
		val = mfspr(SPRN_PMC4);
 | 
						|
		break;
 | 
						|
	case 5:
 | 
						|
		val = mfspr(SPRN_PMC5);
 | 
						|
		break;
 | 
						|
	case 6:
 | 
						|
		val = mfspr(SPRN_PMC6);
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_PPC64
 | 
						|
	case 7:
 | 
						|
		val = mfspr(SPRN_PMC7);
 | 
						|
		break;
 | 
						|
	case 8:
 | 
						|
		val = mfspr(SPRN_PMC8);
 | 
						|
		break;
 | 
						|
#endif /* CONFIG_PPC64 */
 | 
						|
	default:
 | 
						|
		printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 | 
						|
		val = 0;
 | 
						|
	}
 | 
						|
	return val;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Write one PMC.
 | 
						|
 */
 | 
						|
static void write_pmc(int idx, unsigned long val)
 | 
						|
{
 | 
						|
	switch (idx) {
 | 
						|
	case 1:
 | 
						|
		mtspr(SPRN_PMC1, val);
 | 
						|
		break;
 | 
						|
	case 2:
 | 
						|
		mtspr(SPRN_PMC2, val);
 | 
						|
		break;
 | 
						|
	case 3:
 | 
						|
		mtspr(SPRN_PMC3, val);
 | 
						|
		break;
 | 
						|
	case 4:
 | 
						|
		mtspr(SPRN_PMC4, val);
 | 
						|
		break;
 | 
						|
	case 5:
 | 
						|
		mtspr(SPRN_PMC5, val);
 | 
						|
		break;
 | 
						|
	case 6:
 | 
						|
		mtspr(SPRN_PMC6, val);
 | 
						|
		break;
 | 
						|
#ifdef CONFIG_PPC64
 | 
						|
	case 7:
 | 
						|
		mtspr(SPRN_PMC7, val);
 | 
						|
		break;
 | 
						|
	case 8:
 | 
						|
		mtspr(SPRN_PMC8, val);
 | 
						|
		break;
 | 
						|
#endif /* CONFIG_PPC64 */
 | 
						|
	default:
 | 
						|
		printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
 | 
						|
{
 | 
						|
	int i, idx;
 | 
						|
 | 
						|
	for (i = 0; i < cpuhw->n_events; i++) {
 | 
						|
		idx = cpuhw->event[i]->hw.idx;
 | 
						|
		if ((idx) && ((int)read_pmc(idx) < 0))
 | 
						|
			return idx;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Called from sysrq_handle_showregs() */
 | 
						|
void perf_event_print_debug(void)
 | 
						|
{
 | 
						|
	unsigned long sdar, sier, flags;
 | 
						|
	u32 pmcs[MAX_HWEVENTS];
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (!ppmu) {
 | 
						|
		pr_info("Performance monitor hardware not registered.\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ppmu->n_counter)
 | 
						|
		return;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 | 
						|
		 smp_processor_id(), ppmu->name, ppmu->n_counter);
 | 
						|
 | 
						|
	for (i = 0; i < ppmu->n_counter; i++)
 | 
						|
		pmcs[i] = read_pmc(i + 1);
 | 
						|
 | 
						|
	for (; i < MAX_HWEVENTS; i++)
 | 
						|
		pmcs[i] = 0xdeadbeef;
 | 
						|
 | 
						|
	pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 | 
						|
		 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 | 
						|
 | 
						|
	if (ppmu->n_counter > 4)
 | 
						|
		pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 | 
						|
			 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 | 
						|
 | 
						|
	pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 | 
						|
		mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 | 
						|
 | 
						|
	sdar = sier = 0;
 | 
						|
#ifdef CONFIG_PPC64
 | 
						|
	sdar = mfspr(SPRN_SDAR);
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_HAS_SIER)
 | 
						|
		sier = mfspr(SPRN_SIER);
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_ARCH_207S) {
 | 
						|
		pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 | 
						|
			mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 | 
						|
		pr_info("EBBRR: %016lx BESCR: %016lx\n",
 | 
						|
			mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 | 
						|
	}
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_ARCH_31) {
 | 
						|
		pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
 | 
						|
			mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
 | 
						|
	}
 | 
						|
#endif
 | 
						|
	pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 | 
						|
		mfspr(SPRN_SIAR), sdar, sier);
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if a set of events can all go on the PMU at once.
 | 
						|
 * If they can't, this will look at alternative codes for the events
 | 
						|
 * and see if any combination of alternative codes is feasible.
 | 
						|
 * The feasible set is returned in event_id[].
 | 
						|
 */
 | 
						|
static int power_check_constraints(struct cpu_hw_events *cpuhw,
 | 
						|
				   u64 event_id[], unsigned int cflags[],
 | 
						|
				   int n_ev, struct perf_event **event)
 | 
						|
{
 | 
						|
	unsigned long mask, value, nv;
 | 
						|
	unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 | 
						|
	int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 | 
						|
	int i, j;
 | 
						|
	unsigned long addf = ppmu->add_fields;
 | 
						|
	unsigned long tadd = ppmu->test_adder;
 | 
						|
	unsigned long grp_mask = ppmu->group_constraint_mask;
 | 
						|
	unsigned long grp_val = ppmu->group_constraint_val;
 | 
						|
 | 
						|
	if (n_ev > ppmu->n_counter)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* First see if the events will go on as-is */
 | 
						|
	for (i = 0; i < n_ev; ++i) {
 | 
						|
		if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 | 
						|
		    && !ppmu->limited_pmc_event(event_id[i])) {
 | 
						|
			ppmu->get_alternatives(event_id[i], cflags[i],
 | 
						|
					       cpuhw->alternatives[i]);
 | 
						|
			event_id[i] = cpuhw->alternatives[i][0];
 | 
						|
		}
 | 
						|
		if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 | 
						|
					 &cpuhw->avalues[i][0], event[i]->attr.config1))
 | 
						|
			return -1;
 | 
						|
	}
 | 
						|
	value = mask = 0;
 | 
						|
	for (i = 0; i < n_ev; ++i) {
 | 
						|
		nv = (value | cpuhw->avalues[i][0]) +
 | 
						|
			(value & cpuhw->avalues[i][0] & addf);
 | 
						|
 | 
						|
		if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
 | 
						|
			& (~grp_mask)) != 0)
 | 
						|
			break;
 | 
						|
 | 
						|
		value = nv;
 | 
						|
		mask |= cpuhw->amasks[i][0];
 | 
						|
	}
 | 
						|
	if (i == n_ev) {
 | 
						|
		if ((value & mask & grp_mask) != (mask & grp_val))
 | 
						|
			return -1;
 | 
						|
		else
 | 
						|
			return 0;	/* all OK */
 | 
						|
	}
 | 
						|
 | 
						|
	/* doesn't work, gather alternatives... */
 | 
						|
	if (!ppmu->get_alternatives)
 | 
						|
		return -1;
 | 
						|
	for (i = 0; i < n_ev; ++i) {
 | 
						|
		choice[i] = 0;
 | 
						|
		n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 | 
						|
						  cpuhw->alternatives[i]);
 | 
						|
		for (j = 1; j < n_alt[i]; ++j)
 | 
						|
			ppmu->get_constraint(cpuhw->alternatives[i][j],
 | 
						|
					     &cpuhw->amasks[i][j],
 | 
						|
					     &cpuhw->avalues[i][j],
 | 
						|
					     event[i]->attr.config1);
 | 
						|
	}
 | 
						|
 | 
						|
	/* enumerate all possibilities and see if any will work */
 | 
						|
	i = 0;
 | 
						|
	j = -1;
 | 
						|
	value = mask = nv = 0;
 | 
						|
	while (i < n_ev) {
 | 
						|
		if (j >= 0) {
 | 
						|
			/* we're backtracking, restore context */
 | 
						|
			value = svalues[i];
 | 
						|
			mask = smasks[i];
 | 
						|
			j = choice[i];
 | 
						|
		}
 | 
						|
		/*
 | 
						|
		 * See if any alternative k for event_id i,
 | 
						|
		 * where k > j, will satisfy the constraints.
 | 
						|
		 */
 | 
						|
		while (++j < n_alt[i]) {
 | 
						|
			nv = (value | cpuhw->avalues[i][j]) +
 | 
						|
				(value & cpuhw->avalues[i][j] & addf);
 | 
						|
			if ((((nv + tadd) ^ value) & mask) == 0 &&
 | 
						|
			    (((nv + tadd) ^ cpuhw->avalues[i][j])
 | 
						|
			     & cpuhw->amasks[i][j]) == 0)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
		if (j >= n_alt[i]) {
 | 
						|
			/*
 | 
						|
			 * No feasible alternative, backtrack
 | 
						|
			 * to event_id i-1 and continue enumerating its
 | 
						|
			 * alternatives from where we got up to.
 | 
						|
			 */
 | 
						|
			if (--i < 0)
 | 
						|
				return -1;
 | 
						|
		} else {
 | 
						|
			/*
 | 
						|
			 * Found a feasible alternative for event_id i,
 | 
						|
			 * remember where we got up to with this event_id,
 | 
						|
			 * go on to the next event_id, and start with
 | 
						|
			 * the first alternative for it.
 | 
						|
			 */
 | 
						|
			choice[i] = j;
 | 
						|
			svalues[i] = value;
 | 
						|
			smasks[i] = mask;
 | 
						|
			value = nv;
 | 
						|
			mask |= cpuhw->amasks[i][j];
 | 
						|
			++i;
 | 
						|
			j = -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* OK, we have a feasible combination, tell the caller the solution */
 | 
						|
	for (i = 0; i < n_ev; ++i)
 | 
						|
		event_id[i] = cpuhw->alternatives[i][choice[i]];
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if newly-added events have consistent settings for
 | 
						|
 * exclude_{user,kernel,hv} with each other and any previously
 | 
						|
 * added events.
 | 
						|
 */
 | 
						|
static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 | 
						|
			  int n_prev, int n_new)
 | 
						|
{
 | 
						|
	int eu = 0, ek = 0, eh = 0;
 | 
						|
	int i, n, first;
 | 
						|
	struct perf_event *event;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the PMU we're on supports per event exclude settings then we
 | 
						|
	 * don't need to do any of this logic. NB. This assumes no PMU has both
 | 
						|
	 * per event exclude and limited PMCs.
 | 
						|
	 */
 | 
						|
	if (ppmu->flags & PPMU_ARCH_207S)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	n = n_prev + n_new;
 | 
						|
	if (n <= 1)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	first = 1;
 | 
						|
	for (i = 0; i < n; ++i) {
 | 
						|
		if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 | 
						|
			cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		event = ctrs[i];
 | 
						|
		if (first) {
 | 
						|
			eu = event->attr.exclude_user;
 | 
						|
			ek = event->attr.exclude_kernel;
 | 
						|
			eh = event->attr.exclude_hv;
 | 
						|
			first = 0;
 | 
						|
		} else if (event->attr.exclude_user != eu ||
 | 
						|
			   event->attr.exclude_kernel != ek ||
 | 
						|
			   event->attr.exclude_hv != eh) {
 | 
						|
			return -EAGAIN;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (eu || ek || eh)
 | 
						|
		for (i = 0; i < n; ++i)
 | 
						|
			if (cflags[i] & PPMU_LIMITED_PMC_OK)
 | 
						|
				cflags[i] |= PPMU_LIMITED_PMC_REQD;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static u64 check_and_compute_delta(u64 prev, u64 val)
 | 
						|
{
 | 
						|
	u64 delta = (val - prev) & 0xfffffffful;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * POWER7 can roll back counter values, if the new value is smaller
 | 
						|
	 * than the previous value it will cause the delta and the counter to
 | 
						|
	 * have bogus values unless we rolled a counter over.  If a counter is
 | 
						|
	 * rolled back, it will be smaller, but within 256, which is the maximum
 | 
						|
	 * number of events to rollback at once.  If we detect a rollback
 | 
						|
	 * return 0.  This can lead to a small lack of precision in the
 | 
						|
	 * counters.
 | 
						|
	 */
 | 
						|
	if (prev > val && (prev - val) < 256)
 | 
						|
		delta = 0;
 | 
						|
 | 
						|
	return delta;
 | 
						|
}
 | 
						|
 | 
						|
static void power_pmu_read(struct perf_event *event)
 | 
						|
{
 | 
						|
	s64 val, delta, prev;
 | 
						|
 | 
						|
	if (event->hw.state & PERF_HES_STOPPED)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!event->hw.idx)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (is_ebb_event(event)) {
 | 
						|
		val = read_pmc(event->hw.idx);
 | 
						|
		local64_set(&event->hw.prev_count, val);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Performance monitor interrupts come even when interrupts
 | 
						|
	 * are soft-disabled, as long as interrupts are hard-enabled.
 | 
						|
	 * Therefore we treat them like NMIs.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		prev = local64_read(&event->hw.prev_count);
 | 
						|
		barrier();
 | 
						|
		val = read_pmc(event->hw.idx);
 | 
						|
		delta = check_and_compute_delta(prev, val);
 | 
						|
		if (!delta)
 | 
						|
			return;
 | 
						|
	} while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
 | 
						|
 | 
						|
	local64_add(delta, &event->count);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * A number of places program the PMC with (0x80000000 - period_left).
 | 
						|
	 * We never want period_left to be less than 1 because we will program
 | 
						|
	 * the PMC with a value >= 0x800000000 and an edge detected PMC will
 | 
						|
	 * roll around to 0 before taking an exception. We have seen this
 | 
						|
	 * on POWER8.
 | 
						|
	 *
 | 
						|
	 * To fix this, clamp the minimum value of period_left to 1.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		prev = local64_read(&event->hw.period_left);
 | 
						|
		val = prev - delta;
 | 
						|
		if (val < 1)
 | 
						|
			val = 1;
 | 
						|
	} while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * On some machines, PMC5 and PMC6 can't be written, don't respect
 | 
						|
 * the freeze conditions, and don't generate interrupts.  This tells
 | 
						|
 * us if `event' is using such a PMC.
 | 
						|
 */
 | 
						|
static int is_limited_pmc(int pmcnum)
 | 
						|
{
 | 
						|
	return (ppmu->flags & PPMU_LIMITED_PMC5_6)
 | 
						|
		&& (pmcnum == 5 || pmcnum == 6);
 | 
						|
}
 | 
						|
 | 
						|
static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
 | 
						|
				    unsigned long pmc5, unsigned long pmc6)
 | 
						|
{
 | 
						|
	struct perf_event *event;
 | 
						|
	u64 val, prev, delta;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < cpuhw->n_limited; ++i) {
 | 
						|
		event = cpuhw->limited_counter[i];
 | 
						|
		if (!event->hw.idx)
 | 
						|
			continue;
 | 
						|
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 | 
						|
		prev = local64_read(&event->hw.prev_count);
 | 
						|
		event->hw.idx = 0;
 | 
						|
		delta = check_and_compute_delta(prev, val);
 | 
						|
		if (delta)
 | 
						|
			local64_add(delta, &event->count);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
 | 
						|
				  unsigned long pmc5, unsigned long pmc6)
 | 
						|
{
 | 
						|
	struct perf_event *event;
 | 
						|
	u64 val, prev;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < cpuhw->n_limited; ++i) {
 | 
						|
		event = cpuhw->limited_counter[i];
 | 
						|
		event->hw.idx = cpuhw->limited_hwidx[i];
 | 
						|
		val = (event->hw.idx == 5) ? pmc5 : pmc6;
 | 
						|
		prev = local64_read(&event->hw.prev_count);
 | 
						|
		if (check_and_compute_delta(prev, val))
 | 
						|
			local64_set(&event->hw.prev_count, val);
 | 
						|
		perf_event_update_userpage(event);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Since limited events don't respect the freeze conditions, we
 | 
						|
 * have to read them immediately after freezing or unfreezing the
 | 
						|
 * other events.  We try to keep the values from the limited
 | 
						|
 * events as consistent as possible by keeping the delay (in
 | 
						|
 * cycles and instructions) between freezing/unfreezing and reading
 | 
						|
 * the limited events as small and consistent as possible.
 | 
						|
 * Therefore, if any limited events are in use, we read them
 | 
						|
 * both, and always in the same order, to minimize variability,
 | 
						|
 * and do it inside the same asm that writes MMCR0.
 | 
						|
 */
 | 
						|
static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
 | 
						|
{
 | 
						|
	unsigned long pmc5, pmc6;
 | 
						|
 | 
						|
	if (!cpuhw->n_limited) {
 | 
						|
		mtspr(SPRN_MMCR0, mmcr0);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Write MMCR0, then read PMC5 and PMC6 immediately.
 | 
						|
	 * To ensure we don't get a performance monitor interrupt
 | 
						|
	 * between writing MMCR0 and freezing/thawing the limited
 | 
						|
	 * events, we first write MMCR0 with the event overflow
 | 
						|
	 * interrupt enable bits turned off.
 | 
						|
	 */
 | 
						|
	asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
 | 
						|
		     : "=&r" (pmc5), "=&r" (pmc6)
 | 
						|
		     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
 | 
						|
		       "i" (SPRN_MMCR0),
 | 
						|
		       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
 | 
						|
 | 
						|
	if (mmcr0 & MMCR0_FC)
 | 
						|
		freeze_limited_counters(cpuhw, pmc5, pmc6);
 | 
						|
	else
 | 
						|
		thaw_limited_counters(cpuhw, pmc5, pmc6);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Write the full MMCR0 including the event overflow interrupt
 | 
						|
	 * enable bits, if necessary.
 | 
						|
	 */
 | 
						|
	if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
 | 
						|
		mtspr(SPRN_MMCR0, mmcr0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Disable all events to prevent PMU interrupts and to allow
 | 
						|
 * events to be added or removed.
 | 
						|
 */
 | 
						|
static void power_pmu_disable(struct pmu *pmu)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw;
 | 
						|
	unsigned long flags, mmcr0, val, mmcra;
 | 
						|
 | 
						|
	if (!ppmu)
 | 
						|
		return;
 | 
						|
	local_irq_save(flags);
 | 
						|
	cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
 | 
						|
	if (!cpuhw->disabled) {
 | 
						|
		/*
 | 
						|
		 * Check if we ever enabled the PMU on this cpu.
 | 
						|
		 */
 | 
						|
		if (!cpuhw->pmcs_enabled) {
 | 
						|
			ppc_enable_pmcs();
 | 
						|
			cpuhw->pmcs_enabled = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
 | 
						|
		 * Also clear PMXE to disable PMI's getting triggered in some
 | 
						|
		 * corner cases during PMU disable.
 | 
						|
		 */
 | 
						|
		val  = mmcr0 = mfspr(SPRN_MMCR0);
 | 
						|
		val |= MMCR0_FC;
 | 
						|
		val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
 | 
						|
			 MMCR0_PMXE | MMCR0_FC56);
 | 
						|
		/* Set mmcr0 PMCCEXT for p10 */
 | 
						|
		if (ppmu->flags & PPMU_ARCH_31)
 | 
						|
			val |= MMCR0_PMCCEXT;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * The barrier is to make sure the mtspr has been
 | 
						|
		 * executed and the PMU has frozen the events etc.
 | 
						|
		 * before we return.
 | 
						|
		 */
 | 
						|
		write_mmcr0(cpuhw, val);
 | 
						|
		mb();
 | 
						|
		isync();
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Some corner cases could clear the PMU counter overflow
 | 
						|
		 * while a masked PMI is pending. One such case is when
 | 
						|
		 * a PMI happens during interrupt replay and perf counter
 | 
						|
		 * values are cleared by PMU callbacks before replay.
 | 
						|
		 *
 | 
						|
		 * Disable the interrupt by clearing the paca bit for PMI
 | 
						|
		 * since we are disabling the PMU now. Otherwise provide a
 | 
						|
		 * warning if there is PMI pending, but no counter is found
 | 
						|
		 * overflown.
 | 
						|
		 *
 | 
						|
		 * Since power_pmu_disable runs under local_irq_save, it
 | 
						|
		 * could happen that code hits a PMC overflow without PMI
 | 
						|
		 * pending in paca. Hence only clear PMI pending if it was
 | 
						|
		 * set.
 | 
						|
		 *
 | 
						|
		 * If a PMI is pending, then MSR[EE] must be disabled (because
 | 
						|
		 * the masked PMI handler disabling EE). So it is safe to
 | 
						|
		 * call clear_pmi_irq_pending().
 | 
						|
		 */
 | 
						|
		if (pmi_irq_pending())
 | 
						|
			clear_pmi_irq_pending();
 | 
						|
 | 
						|
		val = mmcra = cpuhw->mmcr.mmcra;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Disable instruction sampling if it was enabled
 | 
						|
		 */
 | 
						|
		if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
 | 
						|
			val &= ~MMCRA_SAMPLE_ENABLE;
 | 
						|
 | 
						|
		/* Disable BHRB via mmcra (BHRBRD) for p10 */
 | 
						|
		if (ppmu->flags & PPMU_ARCH_31)
 | 
						|
			val |= MMCRA_BHRB_DISABLE;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Write SPRN_MMCRA if mmcra has either disabled
 | 
						|
		 * instruction sampling or BHRB.
 | 
						|
		 */
 | 
						|
		if (val != mmcra) {
 | 
						|
			mtspr(SPRN_MMCRA, mmcra);
 | 
						|
			mb();
 | 
						|
			isync();
 | 
						|
		}
 | 
						|
 | 
						|
		cpuhw->disabled = 1;
 | 
						|
		cpuhw->n_added = 0;
 | 
						|
 | 
						|
		ebb_switch_out(mmcr0);
 | 
						|
 | 
						|
#ifdef CONFIG_PPC64
 | 
						|
		/*
 | 
						|
		 * These are readable by userspace, may contain kernel
 | 
						|
		 * addresses and are not switched by context switch, so clear
 | 
						|
		 * them now to avoid leaking anything to userspace in general
 | 
						|
		 * including to another process.
 | 
						|
		 */
 | 
						|
		if (ppmu->flags & PPMU_ARCH_207S) {
 | 
						|
			mtspr(SPRN_SDAR, 0);
 | 
						|
			mtspr(SPRN_SIAR, 0);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Re-enable all events if disable == 0.
 | 
						|
 * If we were previously disabled and events were added, then
 | 
						|
 * put the new config on the PMU.
 | 
						|
 */
 | 
						|
static void power_pmu_enable(struct pmu *pmu)
 | 
						|
{
 | 
						|
	struct perf_event *event;
 | 
						|
	struct cpu_hw_events *cpuhw;
 | 
						|
	unsigned long flags;
 | 
						|
	long i;
 | 
						|
	unsigned long val, mmcr0;
 | 
						|
	s64 left;
 | 
						|
	unsigned int hwc_index[MAX_HWEVENTS];
 | 
						|
	int n_lim;
 | 
						|
	int idx;
 | 
						|
	bool ebb;
 | 
						|
 | 
						|
	if (!ppmu)
 | 
						|
		return;
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
	if (!cpuhw->disabled)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (cpuhw->n_events == 0) {
 | 
						|
		ppc_set_pmu_inuse(0);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	cpuhw->disabled = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * EBB requires an exclusive group and all events must have the EBB
 | 
						|
	 * flag set, or not set, so we can just check a single event. Also we
 | 
						|
	 * know we have at least one event.
 | 
						|
	 */
 | 
						|
	ebb = is_ebb_event(cpuhw->event[0]);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we didn't change anything, or only removed events,
 | 
						|
	 * no need to recalculate MMCR* settings and reset the PMCs.
 | 
						|
	 * Just reenable the PMU with the current MMCR* settings
 | 
						|
	 * (possibly updated for removal of events).
 | 
						|
	 */
 | 
						|
	if (!cpuhw->n_added) {
 | 
						|
		/*
 | 
						|
		 * If there is any active event with an overflown PMC
 | 
						|
		 * value, set back PACA_IRQ_PMI which would have been
 | 
						|
		 * cleared in power_pmu_disable().
 | 
						|
		 */
 | 
						|
		hard_irq_disable();
 | 
						|
		if (any_pmc_overflown(cpuhw))
 | 
						|
			set_pmi_irq_pending();
 | 
						|
 | 
						|
		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
 | 
						|
		mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
 | 
						|
		if (ppmu->flags & PPMU_ARCH_31)
 | 
						|
			mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
 | 
						|
		goto out_enable;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear all MMCR settings and recompute them for the new set of events.
 | 
						|
	 */
 | 
						|
	memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
 | 
						|
 | 
						|
	if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
 | 
						|
			       &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
 | 
						|
		/* shouldn't ever get here */
 | 
						|
		printk(KERN_ERR "oops compute_mmcr failed\n");
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(ppmu->flags & PPMU_ARCH_207S)) {
 | 
						|
		/*
 | 
						|
		 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
 | 
						|
		 * bits for the first event. We have already checked that all
 | 
						|
		 * events have the same value for these bits as the first event.
 | 
						|
		 */
 | 
						|
		event = cpuhw->event[0];
 | 
						|
		if (event->attr.exclude_user)
 | 
						|
			cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
 | 
						|
		if (event->attr.exclude_kernel)
 | 
						|
			cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
 | 
						|
		if (event->attr.exclude_hv)
 | 
						|
			cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Write the new configuration to MMCR* with the freeze
 | 
						|
	 * bit set and set the hardware events to their initial values.
 | 
						|
	 * Then unfreeze the events.
 | 
						|
	 */
 | 
						|
	ppc_set_pmu_inuse(1);
 | 
						|
	mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
 | 
						|
	mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
 | 
						|
	mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
 | 
						|
				| MMCR0_FC);
 | 
						|
	if (ppmu->flags & PPMU_ARCH_207S)
 | 
						|
		mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_ARCH_31)
 | 
						|
		mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Read off any pre-existing events that need to move
 | 
						|
	 * to another PMC.
 | 
						|
	 */
 | 
						|
	for (i = 0; i < cpuhw->n_events; ++i) {
 | 
						|
		event = cpuhw->event[i];
 | 
						|
		if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
 | 
						|
			power_pmu_read(event);
 | 
						|
			write_pmc(event->hw.idx, 0);
 | 
						|
			event->hw.idx = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize the PMCs for all the new and moved events.
 | 
						|
	 */
 | 
						|
	cpuhw->n_limited = n_lim = 0;
 | 
						|
	for (i = 0; i < cpuhw->n_events; ++i) {
 | 
						|
		event = cpuhw->event[i];
 | 
						|
		if (event->hw.idx)
 | 
						|
			continue;
 | 
						|
		idx = hwc_index[i] + 1;
 | 
						|
		if (is_limited_pmc(idx)) {
 | 
						|
			cpuhw->limited_counter[n_lim] = event;
 | 
						|
			cpuhw->limited_hwidx[n_lim] = idx;
 | 
						|
			++n_lim;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ebb)
 | 
						|
			val = local64_read(&event->hw.prev_count);
 | 
						|
		else {
 | 
						|
			val = 0;
 | 
						|
			if (event->hw.sample_period) {
 | 
						|
				left = local64_read(&event->hw.period_left);
 | 
						|
				if (left < 0x80000000L)
 | 
						|
					val = 0x80000000L - left;
 | 
						|
			}
 | 
						|
			local64_set(&event->hw.prev_count, val);
 | 
						|
		}
 | 
						|
 | 
						|
		event->hw.idx = idx;
 | 
						|
		if (event->hw.state & PERF_HES_STOPPED)
 | 
						|
			val = 0;
 | 
						|
		write_pmc(idx, val);
 | 
						|
 | 
						|
		perf_event_update_userpage(event);
 | 
						|
	}
 | 
						|
	cpuhw->n_limited = n_lim;
 | 
						|
	cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
 | 
						|
 | 
						|
 out_enable:
 | 
						|
	pmao_restore_workaround(ebb);
 | 
						|
 | 
						|
	mmcr0 = ebb_switch_in(ebb, cpuhw);
 | 
						|
 | 
						|
	mb();
 | 
						|
	if (cpuhw->bhrb_users)
 | 
						|
		ppmu->config_bhrb(cpuhw->bhrb_filter);
 | 
						|
 | 
						|
	write_mmcr0(cpuhw, mmcr0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Enable instruction sampling if necessary
 | 
						|
	 */
 | 
						|
	if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
 | 
						|
		mb();
 | 
						|
		mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
 | 
						|
	}
 | 
						|
 | 
						|
 out:
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static int collect_events(struct perf_event *group, int max_count,
 | 
						|
			  struct perf_event *ctrs[], u64 *events,
 | 
						|
			  unsigned int *flags)
 | 
						|
{
 | 
						|
	int n = 0;
 | 
						|
	struct perf_event *event;
 | 
						|
 | 
						|
	if (group->pmu->task_ctx_nr == perf_hw_context) {
 | 
						|
		if (n >= max_count)
 | 
						|
			return -1;
 | 
						|
		ctrs[n] = group;
 | 
						|
		flags[n] = group->hw.event_base;
 | 
						|
		events[n++] = group->hw.config;
 | 
						|
	}
 | 
						|
	for_each_sibling_event(event, group) {
 | 
						|
		if (event->pmu->task_ctx_nr == perf_hw_context &&
 | 
						|
		    event->state != PERF_EVENT_STATE_OFF) {
 | 
						|
			if (n >= max_count)
 | 
						|
				return -1;
 | 
						|
			ctrs[n] = event;
 | 
						|
			flags[n] = event->hw.event_base;
 | 
						|
			events[n++] = event->hw.config;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return n;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Add an event to the PMU.
 | 
						|
 * If all events are not already frozen, then we disable and
 | 
						|
 * re-enable the PMU in order to get hw_perf_enable to do the
 | 
						|
 * actual work of reconfiguring the PMU.
 | 
						|
 */
 | 
						|
static int power_pmu_add(struct perf_event *event, int ef_flags)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw;
 | 
						|
	unsigned long flags;
 | 
						|
	int n0;
 | 
						|
	int ret = -EAGAIN;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	perf_pmu_disable(event->pmu);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Add the event to the list (if there is room)
 | 
						|
	 * and check whether the total set is still feasible.
 | 
						|
	 */
 | 
						|
	cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
	n0 = cpuhw->n_events;
 | 
						|
	if (n0 >= ppmu->n_counter)
 | 
						|
		goto out;
 | 
						|
	cpuhw->event[n0] = event;
 | 
						|
	cpuhw->events[n0] = event->hw.config;
 | 
						|
	cpuhw->flags[n0] = event->hw.event_base;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * This event may have been disabled/stopped in record_and_restart()
 | 
						|
	 * because we exceeded the ->event_limit. If re-starting the event,
 | 
						|
	 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
 | 
						|
	 * notification is re-enabled.
 | 
						|
	 */
 | 
						|
	if (!(ef_flags & PERF_EF_START))
 | 
						|
		event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
 | 
						|
	else
 | 
						|
		event->hw.state = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If group events scheduling transaction was started,
 | 
						|
	 * skip the schedulability test here, it will be performed
 | 
						|
	 * at commit time(->commit_txn) as a whole
 | 
						|
	 */
 | 
						|
	if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
 | 
						|
		goto nocheck;
 | 
						|
 | 
						|
	if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
 | 
						|
		goto out;
 | 
						|
	if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
 | 
						|
		goto out;
 | 
						|
	event->hw.config = cpuhw->events[n0];
 | 
						|
 | 
						|
nocheck:
 | 
						|
	ebb_event_add(event);
 | 
						|
 | 
						|
	++cpuhw->n_events;
 | 
						|
	++cpuhw->n_added;
 | 
						|
 | 
						|
	ret = 0;
 | 
						|
 out:
 | 
						|
	if (has_branch_stack(event)) {
 | 
						|
		u64 bhrb_filter = -1;
 | 
						|
 | 
						|
		if (ppmu->bhrb_filter_map)
 | 
						|
			bhrb_filter = ppmu->bhrb_filter_map(
 | 
						|
				event->attr.branch_sample_type);
 | 
						|
 | 
						|
		if (bhrb_filter != -1) {
 | 
						|
			cpuhw->bhrb_filter = bhrb_filter;
 | 
						|
			power_pmu_bhrb_enable(event);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	perf_pmu_enable(event->pmu);
 | 
						|
	local_irq_restore(flags);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove an event from the PMU.
 | 
						|
 */
 | 
						|
static void power_pmu_del(struct perf_event *event, int ef_flags)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw;
 | 
						|
	long i;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	perf_pmu_disable(event->pmu);
 | 
						|
 | 
						|
	power_pmu_read(event);
 | 
						|
 | 
						|
	cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
	for (i = 0; i < cpuhw->n_events; ++i) {
 | 
						|
		if (event == cpuhw->event[i]) {
 | 
						|
			while (++i < cpuhw->n_events) {
 | 
						|
				cpuhw->event[i-1] = cpuhw->event[i];
 | 
						|
				cpuhw->events[i-1] = cpuhw->events[i];
 | 
						|
				cpuhw->flags[i-1] = cpuhw->flags[i];
 | 
						|
			}
 | 
						|
			--cpuhw->n_events;
 | 
						|
			ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
 | 
						|
			if (event->hw.idx) {
 | 
						|
				write_pmc(event->hw.idx, 0);
 | 
						|
				event->hw.idx = 0;
 | 
						|
			}
 | 
						|
			perf_event_update_userpage(event);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	for (i = 0; i < cpuhw->n_limited; ++i)
 | 
						|
		if (event == cpuhw->limited_counter[i])
 | 
						|
			break;
 | 
						|
	if (i < cpuhw->n_limited) {
 | 
						|
		while (++i < cpuhw->n_limited) {
 | 
						|
			cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
 | 
						|
			cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
 | 
						|
		}
 | 
						|
		--cpuhw->n_limited;
 | 
						|
	}
 | 
						|
	if (cpuhw->n_events == 0) {
 | 
						|
		/* disable exceptions if no events are running */
 | 
						|
		cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
 | 
						|
	}
 | 
						|
 | 
						|
	if (has_branch_stack(event))
 | 
						|
		power_pmu_bhrb_disable(event);
 | 
						|
 | 
						|
	perf_pmu_enable(event->pmu);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * POWER-PMU does not support disabling individual counters, hence
 | 
						|
 * program their cycle counter to their max value and ignore the interrupts.
 | 
						|
 */
 | 
						|
 | 
						|
static void power_pmu_start(struct perf_event *event, int ef_flags)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	s64 left;
 | 
						|
	unsigned long val;
 | 
						|
 | 
						|
	if (!event->hw.idx || !event->hw.sample_period)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (!(event->hw.state & PERF_HES_STOPPED))
 | 
						|
		return;
 | 
						|
 | 
						|
	if (ef_flags & PERF_EF_RELOAD)
 | 
						|
		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	perf_pmu_disable(event->pmu);
 | 
						|
 | 
						|
	event->hw.state = 0;
 | 
						|
	left = local64_read(&event->hw.period_left);
 | 
						|
 | 
						|
	val = 0;
 | 
						|
	if (left < 0x80000000L)
 | 
						|
		val = 0x80000000L - left;
 | 
						|
 | 
						|
	write_pmc(event->hw.idx, val);
 | 
						|
 | 
						|
	perf_event_update_userpage(event);
 | 
						|
	perf_pmu_enable(event->pmu);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
static void power_pmu_stop(struct perf_event *event, int ef_flags)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (!event->hw.idx || !event->hw.sample_period)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (event->hw.state & PERF_HES_STOPPED)
 | 
						|
		return;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
	perf_pmu_disable(event->pmu);
 | 
						|
 | 
						|
	power_pmu_read(event);
 | 
						|
	event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
 | 
						|
	write_pmc(event->hw.idx, 0);
 | 
						|
 | 
						|
	perf_event_update_userpage(event);
 | 
						|
	perf_pmu_enable(event->pmu);
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Start group events scheduling transaction
 | 
						|
 * Set the flag to make pmu::enable() not perform the
 | 
						|
 * schedulability test, it will be performed at commit time
 | 
						|
 *
 | 
						|
 * We only support PERF_PMU_TXN_ADD transactions. Save the
 | 
						|
 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
 | 
						|
 * transactions.
 | 
						|
 */
 | 
						|
static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
 | 
						|
	WARN_ON_ONCE(cpuhw->txn_flags);		/* txn already in flight */
 | 
						|
 | 
						|
	cpuhw->txn_flags = txn_flags;
 | 
						|
	if (txn_flags & ~PERF_PMU_TXN_ADD)
 | 
						|
		return;
 | 
						|
 | 
						|
	perf_pmu_disable(pmu);
 | 
						|
	cpuhw->n_txn_start = cpuhw->n_events;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Stop group events scheduling transaction
 | 
						|
 * Clear the flag and pmu::enable() will perform the
 | 
						|
 * schedulability test.
 | 
						|
 */
 | 
						|
static void power_pmu_cancel_txn(struct pmu *pmu)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
	unsigned int txn_flags;
 | 
						|
 | 
						|
	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
 | 
						|
 | 
						|
	txn_flags = cpuhw->txn_flags;
 | 
						|
	cpuhw->txn_flags = 0;
 | 
						|
	if (txn_flags & ~PERF_PMU_TXN_ADD)
 | 
						|
		return;
 | 
						|
 | 
						|
	perf_pmu_enable(pmu);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Commit group events scheduling transaction
 | 
						|
 * Perform the group schedulability test as a whole
 | 
						|
 * Return 0 if success
 | 
						|
 */
 | 
						|
static int power_pmu_commit_txn(struct pmu *pmu)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw;
 | 
						|
	long i, n;
 | 
						|
 | 
						|
	if (!ppmu)
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
	WARN_ON_ONCE(!cpuhw->txn_flags);	/* no txn in flight */
 | 
						|
 | 
						|
	if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
 | 
						|
		cpuhw->txn_flags = 0;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	n = cpuhw->n_events;
 | 
						|
	if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
 | 
						|
		return -EAGAIN;
 | 
						|
	i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
 | 
						|
	if (i < 0)
 | 
						|
		return -EAGAIN;
 | 
						|
 | 
						|
	for (i = cpuhw->n_txn_start; i < n; ++i)
 | 
						|
		cpuhw->event[i]->hw.config = cpuhw->events[i];
 | 
						|
 | 
						|
	cpuhw->txn_flags = 0;
 | 
						|
	perf_pmu_enable(pmu);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Return 1 if we might be able to put event on a limited PMC,
 | 
						|
 * or 0 if not.
 | 
						|
 * An event can only go on a limited PMC if it counts something
 | 
						|
 * that a limited PMC can count, doesn't require interrupts, and
 | 
						|
 * doesn't exclude any processor mode.
 | 
						|
 */
 | 
						|
static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
 | 
						|
				 unsigned int flags)
 | 
						|
{
 | 
						|
	int n;
 | 
						|
	u64 alt[MAX_EVENT_ALTERNATIVES];
 | 
						|
 | 
						|
	if (event->attr.exclude_user
 | 
						|
	    || event->attr.exclude_kernel
 | 
						|
	    || event->attr.exclude_hv
 | 
						|
	    || event->attr.sample_period)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (ppmu->limited_pmc_event(ev))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The requested event_id isn't on a limited PMC already;
 | 
						|
	 * see if any alternative code goes on a limited PMC.
 | 
						|
	 */
 | 
						|
	if (!ppmu->get_alternatives)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
 | 
						|
	n = ppmu->get_alternatives(ev, flags, alt);
 | 
						|
 | 
						|
	return n > 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find an alternative event_id that goes on a normal PMC, if possible,
 | 
						|
 * and return the event_id code, or 0 if there is no such alternative.
 | 
						|
 * (Note: event_id code 0 is "don't count" on all machines.)
 | 
						|
 */
 | 
						|
static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
 | 
						|
{
 | 
						|
	u64 alt[MAX_EVENT_ALTERNATIVES];
 | 
						|
	int n;
 | 
						|
 | 
						|
	flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
 | 
						|
	n = ppmu->get_alternatives(ev, flags, alt);
 | 
						|
	if (!n)
 | 
						|
		return 0;
 | 
						|
	return alt[0];
 | 
						|
}
 | 
						|
 | 
						|
/* Number of perf_events counting hardware events */
 | 
						|
static atomic_t num_events;
 | 
						|
/* Used to avoid races in calling reserve/release_pmc_hardware */
 | 
						|
static DEFINE_MUTEX(pmc_reserve_mutex);
 | 
						|
 | 
						|
/*
 | 
						|
 * Release the PMU if this is the last perf_event.
 | 
						|
 */
 | 
						|
static void hw_perf_event_destroy(struct perf_event *event)
 | 
						|
{
 | 
						|
	if (!atomic_add_unless(&num_events, -1, 1)) {
 | 
						|
		mutex_lock(&pmc_reserve_mutex);
 | 
						|
		if (atomic_dec_return(&num_events) == 0)
 | 
						|
			release_pmc_hardware();
 | 
						|
		mutex_unlock(&pmc_reserve_mutex);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Translate a generic cache event_id config to a raw event_id code.
 | 
						|
 */
 | 
						|
static int hw_perf_cache_event(u64 config, u64 *eventp)
 | 
						|
{
 | 
						|
	unsigned long type, op, result;
 | 
						|
	u64 ev;
 | 
						|
 | 
						|
	if (!ppmu->cache_events)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	/* unpack config */
 | 
						|
	type = config & 0xff;
 | 
						|
	op = (config >> 8) & 0xff;
 | 
						|
	result = (config >> 16) & 0xff;
 | 
						|
 | 
						|
	if (type >= PERF_COUNT_HW_CACHE_MAX ||
 | 
						|
	    op >= PERF_COUNT_HW_CACHE_OP_MAX ||
 | 
						|
	    result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	ev = (*ppmu->cache_events)[type][op][result];
 | 
						|
	if (ev == 0)
 | 
						|
		return -EOPNOTSUPP;
 | 
						|
	if (ev == -1)
 | 
						|
		return -EINVAL;
 | 
						|
	*eventp = ev;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool is_event_blacklisted(u64 ev)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i=0; i < ppmu->n_blacklist_ev; i++) {
 | 
						|
		if (ppmu->blacklist_ev[i] == ev)
 | 
						|
			return true;
 | 
						|
	}
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int power_pmu_event_init(struct perf_event *event)
 | 
						|
{
 | 
						|
	u64 ev;
 | 
						|
	unsigned long flags, irq_flags;
 | 
						|
	struct perf_event *ctrs[MAX_HWEVENTS];
 | 
						|
	u64 events[MAX_HWEVENTS];
 | 
						|
	unsigned int cflags[MAX_HWEVENTS];
 | 
						|
	int n;
 | 
						|
	int err;
 | 
						|
	struct cpu_hw_events *cpuhw;
 | 
						|
 | 
						|
	if (!ppmu)
 | 
						|
		return -ENOENT;
 | 
						|
 | 
						|
	if (has_branch_stack(event)) {
 | 
						|
	        /* PMU has BHRB enabled */
 | 
						|
		if (!(ppmu->flags & PPMU_ARCH_207S))
 | 
						|
			return -EOPNOTSUPP;
 | 
						|
	}
 | 
						|
 | 
						|
	switch (event->attr.type) {
 | 
						|
	case PERF_TYPE_HARDWARE:
 | 
						|
		ev = event->attr.config;
 | 
						|
		if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
 | 
						|
			return -EOPNOTSUPP;
 | 
						|
 | 
						|
		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
 | 
						|
			return -EINVAL;
 | 
						|
		ev = ppmu->generic_events[ev];
 | 
						|
		break;
 | 
						|
	case PERF_TYPE_HW_CACHE:
 | 
						|
		err = hw_perf_cache_event(event->attr.config, &ev);
 | 
						|
		if (err)
 | 
						|
			return err;
 | 
						|
 | 
						|
		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
 | 
						|
			return -EINVAL;
 | 
						|
		break;
 | 
						|
	case PERF_TYPE_RAW:
 | 
						|
		ev = event->attr.config;
 | 
						|
 | 
						|
		if (ppmu->blacklist_ev && is_event_blacklisted(ev))
 | 
						|
			return -EINVAL;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		return -ENOENT;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * PMU config registers have fields that are
 | 
						|
	 * reserved and some specific values for bit fields are reserved.
 | 
						|
	 * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
 | 
						|
	 * and value of 0b11 to this field is reserved.
 | 
						|
	 * Check for invalid values in attr.config.
 | 
						|
	 */
 | 
						|
	if (ppmu->check_attr_config &&
 | 
						|
	    ppmu->check_attr_config(event))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	event->hw.config_base = ev;
 | 
						|
	event->hw.idx = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we are not running on a hypervisor, force the
 | 
						|
	 * exclude_hv bit to 0 so that we don't care what
 | 
						|
	 * the user set it to.
 | 
						|
	 */
 | 
						|
	if (!firmware_has_feature(FW_FEATURE_LPAR))
 | 
						|
		event->attr.exclude_hv = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is a per-task event, then we can use
 | 
						|
	 * PM_RUN_* events interchangeably with their non RUN_*
 | 
						|
	 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
 | 
						|
	 * XXX we should check if the task is an idle task.
 | 
						|
	 */
 | 
						|
	flags = 0;
 | 
						|
	if (event->attach_state & PERF_ATTACH_TASK)
 | 
						|
		flags |= PPMU_ONLY_COUNT_RUN;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this machine has limited events, check whether this
 | 
						|
	 * event_id could go on a limited event.
 | 
						|
	 */
 | 
						|
	if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
 | 
						|
		if (can_go_on_limited_pmc(event, ev, flags)) {
 | 
						|
			flags |= PPMU_LIMITED_PMC_OK;
 | 
						|
		} else if (ppmu->limited_pmc_event(ev)) {
 | 
						|
			/*
 | 
						|
			 * The requested event_id is on a limited PMC,
 | 
						|
			 * but we can't use a limited PMC; see if any
 | 
						|
			 * alternative goes on a normal PMC.
 | 
						|
			 */
 | 
						|
			ev = normal_pmc_alternative(ev, flags);
 | 
						|
			if (!ev)
 | 
						|
				return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Extra checks for EBB */
 | 
						|
	err = ebb_event_check(event);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this is in a group, check if it can go on with all the
 | 
						|
	 * other hardware events in the group.  We assume the event
 | 
						|
	 * hasn't been linked into its leader's sibling list at this point.
 | 
						|
	 */
 | 
						|
	n = 0;
 | 
						|
	if (event->group_leader != event) {
 | 
						|
		n = collect_events(event->group_leader, ppmu->n_counter - 1,
 | 
						|
				   ctrs, events, cflags);
 | 
						|
		if (n < 0)
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
	events[n] = ev;
 | 
						|
	ctrs[n] = event;
 | 
						|
	cflags[n] = flags;
 | 
						|
	if (check_excludes(ctrs, cflags, n, 1))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	local_irq_save(irq_flags);
 | 
						|
	cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
 | 
						|
	err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
 | 
						|
 | 
						|
	if (has_branch_stack(event)) {
 | 
						|
		u64 bhrb_filter = -1;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Currently no PMU supports having multiple branch filters
 | 
						|
		 * at the same time. Branch filters are set via MMCRA IFM[32:33]
 | 
						|
		 * bits for Power8 and above. Return EOPNOTSUPP when multiple
 | 
						|
		 * branch filters are requested in the event attr.
 | 
						|
		 *
 | 
						|
		 * When opening event via perf_event_open(), branch_sample_type
 | 
						|
		 * gets adjusted in perf_copy_attr(). Kernel will automatically
 | 
						|
		 * adjust the branch_sample_type based on the event modifier
 | 
						|
		 * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
 | 
						|
		 * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
 | 
						|
		 */
 | 
						|
		if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
 | 
						|
			local_irq_restore(irq_flags);
 | 
						|
			return -EOPNOTSUPP;
 | 
						|
		}
 | 
						|
 | 
						|
		if (ppmu->bhrb_filter_map)
 | 
						|
			bhrb_filter = ppmu->bhrb_filter_map(
 | 
						|
					event->attr.branch_sample_type);
 | 
						|
 | 
						|
		if (bhrb_filter == -1) {
 | 
						|
			local_irq_restore(irq_flags);
 | 
						|
			return -EOPNOTSUPP;
 | 
						|
		}
 | 
						|
		cpuhw->bhrb_filter = bhrb_filter;
 | 
						|
	}
 | 
						|
 | 
						|
	local_irq_restore(irq_flags);
 | 
						|
	if (err)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	event->hw.config = events[n];
 | 
						|
	event->hw.event_base = cflags[n];
 | 
						|
	event->hw.last_period = event->hw.sample_period;
 | 
						|
	local64_set(&event->hw.period_left, event->hw.last_period);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * For EBB events we just context switch the PMC value, we don't do any
 | 
						|
	 * of the sample_period logic. We use hw.prev_count for this.
 | 
						|
	 */
 | 
						|
	if (is_ebb_event(event))
 | 
						|
		local64_set(&event->hw.prev_count, 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * See if we need to reserve the PMU.
 | 
						|
	 * If no events are currently in use, then we have to take a
 | 
						|
	 * mutex to ensure that we don't race with another task doing
 | 
						|
	 * reserve_pmc_hardware or release_pmc_hardware.
 | 
						|
	 */
 | 
						|
	err = 0;
 | 
						|
	if (!atomic_inc_not_zero(&num_events)) {
 | 
						|
		mutex_lock(&pmc_reserve_mutex);
 | 
						|
		if (atomic_read(&num_events) == 0 &&
 | 
						|
		    reserve_pmc_hardware(perf_event_interrupt))
 | 
						|
			err = -EBUSY;
 | 
						|
		else
 | 
						|
			atomic_inc(&num_events);
 | 
						|
		mutex_unlock(&pmc_reserve_mutex);
 | 
						|
	}
 | 
						|
	event->destroy = hw_perf_event_destroy;
 | 
						|
 | 
						|
	return err;
 | 
						|
}
 | 
						|
 | 
						|
static int power_pmu_event_idx(struct perf_event *event)
 | 
						|
{
 | 
						|
	return event->hw.idx;
 | 
						|
}
 | 
						|
 | 
						|
ssize_t power_events_sysfs_show(struct device *dev,
 | 
						|
				struct device_attribute *attr, char *page)
 | 
						|
{
 | 
						|
	struct perf_pmu_events_attr *pmu_attr;
 | 
						|
 | 
						|
	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
 | 
						|
 | 
						|
	return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
 | 
						|
}
 | 
						|
 | 
						|
static struct pmu power_pmu = {
 | 
						|
	.pmu_enable	= power_pmu_enable,
 | 
						|
	.pmu_disable	= power_pmu_disable,
 | 
						|
	.event_init	= power_pmu_event_init,
 | 
						|
	.add		= power_pmu_add,
 | 
						|
	.del		= power_pmu_del,
 | 
						|
	.start		= power_pmu_start,
 | 
						|
	.stop		= power_pmu_stop,
 | 
						|
	.read		= power_pmu_read,
 | 
						|
	.start_txn	= power_pmu_start_txn,
 | 
						|
	.cancel_txn	= power_pmu_cancel_txn,
 | 
						|
	.commit_txn	= power_pmu_commit_txn,
 | 
						|
	.event_idx	= power_pmu_event_idx,
 | 
						|
	.sched_task	= power_pmu_sched_task,
 | 
						|
};
 | 
						|
 | 
						|
#define PERF_SAMPLE_ADDR_TYPE  (PERF_SAMPLE_ADDR |		\
 | 
						|
				PERF_SAMPLE_PHYS_ADDR |		\
 | 
						|
				PERF_SAMPLE_DATA_PAGE_SIZE)
 | 
						|
/*
 | 
						|
 * A counter has overflowed; update its count and record
 | 
						|
 * things if requested.  Note that interrupts are hard-disabled
 | 
						|
 * here so there is no possibility of being interrupted.
 | 
						|
 */
 | 
						|
static void record_and_restart(struct perf_event *event, unsigned long val,
 | 
						|
			       struct pt_regs *regs)
 | 
						|
{
 | 
						|
	u64 period = event->hw.sample_period;
 | 
						|
	s64 prev, delta, left;
 | 
						|
	int record = 0;
 | 
						|
 | 
						|
	if (event->hw.state & PERF_HES_STOPPED) {
 | 
						|
		write_pmc(event->hw.idx, 0);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	/* we don't have to worry about interrupts here */
 | 
						|
	prev = local64_read(&event->hw.prev_count);
 | 
						|
	delta = check_and_compute_delta(prev, val);
 | 
						|
	local64_add(delta, &event->count);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * See if the total period for this event has expired,
 | 
						|
	 * and update for the next period.
 | 
						|
	 */
 | 
						|
	val = 0;
 | 
						|
	left = local64_read(&event->hw.period_left) - delta;
 | 
						|
	if (delta == 0)
 | 
						|
		left++;
 | 
						|
	if (period) {
 | 
						|
		if (left <= 0) {
 | 
						|
			left += period;
 | 
						|
			if (left <= 0)
 | 
						|
				left = period;
 | 
						|
 | 
						|
			/*
 | 
						|
			 * If address is not requested in the sample via
 | 
						|
			 * PERF_SAMPLE_IP, just record that sample irrespective
 | 
						|
			 * of SIAR valid check.
 | 
						|
			 */
 | 
						|
			if (event->attr.sample_type & PERF_SAMPLE_IP)
 | 
						|
				record = siar_valid(regs);
 | 
						|
			else
 | 
						|
				record = 1;
 | 
						|
 | 
						|
			event->hw.last_period = event->hw.sample_period;
 | 
						|
		}
 | 
						|
		if (left < 0x80000000LL)
 | 
						|
			val = 0x80000000LL - left;
 | 
						|
	}
 | 
						|
 | 
						|
	write_pmc(event->hw.idx, val);
 | 
						|
	local64_set(&event->hw.prev_count, val);
 | 
						|
	local64_set(&event->hw.period_left, left);
 | 
						|
	perf_event_update_userpage(event);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Due to hardware limitation, sometimes SIAR could sample a kernel
 | 
						|
	 * address even when freeze on supervisor state (kernel) is set in
 | 
						|
	 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
 | 
						|
	 * these cases.
 | 
						|
	 */
 | 
						|
	if (event->attr.exclude_kernel &&
 | 
						|
	    (event->attr.sample_type & PERF_SAMPLE_IP) &&
 | 
						|
	    is_kernel_addr(mfspr(SPRN_SIAR)))
 | 
						|
		record = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Finally record data if requested.
 | 
						|
	 */
 | 
						|
	if (record) {
 | 
						|
		struct perf_sample_data data;
 | 
						|
 | 
						|
		perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
 | 
						|
 | 
						|
		if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
 | 
						|
			perf_get_data_addr(event, regs, &data.addr);
 | 
						|
 | 
						|
		if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
 | 
						|
			struct cpu_hw_events *cpuhw;
 | 
						|
			cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
			power_pmu_bhrb_read(event, cpuhw);
 | 
						|
			data.br_stack = &cpuhw->bhrb_stack;
 | 
						|
			data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
 | 
						|
		}
 | 
						|
 | 
						|
		if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
 | 
						|
						ppmu->get_mem_data_src) {
 | 
						|
			ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
 | 
						|
			data.sample_flags |= PERF_SAMPLE_DATA_SRC;
 | 
						|
		}
 | 
						|
 | 
						|
		if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
 | 
						|
						ppmu->get_mem_weight) {
 | 
						|
			ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
 | 
						|
			data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
 | 
						|
		}
 | 
						|
		if (perf_event_overflow(event, &data, regs))
 | 
						|
			power_pmu_stop(event, 0);
 | 
						|
	} else if (period) {
 | 
						|
		/* Account for interrupt in case of invalid SIAR */
 | 
						|
		if (perf_event_account_interrupt(event))
 | 
						|
			power_pmu_stop(event, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from generic code to get the misc flags (i.e. processor mode)
 | 
						|
 * for an event_id.
 | 
						|
 */
 | 
						|
unsigned long perf_misc_flags(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	u32 flags = perf_get_misc_flags(regs);
 | 
						|
 | 
						|
	if (flags)
 | 
						|
		return flags;
 | 
						|
	return user_mode(regs) ? PERF_RECORD_MISC_USER :
 | 
						|
		PERF_RECORD_MISC_KERNEL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from generic code to get the instruction pointer
 | 
						|
 * for an event_id.
 | 
						|
 */
 | 
						|
unsigned long perf_instruction_pointer(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long siar = mfspr(SPRN_SIAR);
 | 
						|
 | 
						|
	if (regs_use_siar(regs) && siar_valid(regs) && siar)
 | 
						|
		return siar + perf_ip_adjust(regs);
 | 
						|
	else
 | 
						|
		return regs->nip;
 | 
						|
}
 | 
						|
 | 
						|
static bool pmc_overflow_power7(unsigned long val)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Events on POWER7 can roll back if a speculative event doesn't
 | 
						|
	 * eventually complete. Unfortunately in some rare cases they will
 | 
						|
	 * raise a performance monitor exception. We need to catch this to
 | 
						|
	 * ensure we reset the PMC. In all cases the PMC will be 256 or less
 | 
						|
	 * cycles from overflow.
 | 
						|
	 *
 | 
						|
	 * We only do this if the first pass fails to find any overflowing
 | 
						|
	 * PMCs because a user might set a period of less than 256 and we
 | 
						|
	 * don't want to mistakenly reset them.
 | 
						|
	 */
 | 
						|
	if ((0x80000000 - val) <= 256)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool pmc_overflow(unsigned long val)
 | 
						|
{
 | 
						|
	if ((int)val < 0)
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Performance monitor interrupt stuff
 | 
						|
 */
 | 
						|
static void __perf_event_interrupt(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 | 
						|
	struct perf_event *event;
 | 
						|
	int found, active;
 | 
						|
 | 
						|
	if (cpuhw->n_limited)
 | 
						|
		freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
 | 
						|
					mfspr(SPRN_PMC6));
 | 
						|
 | 
						|
	perf_read_regs(regs);
 | 
						|
 | 
						|
	/* Read all the PMCs since we'll need them a bunch of times */
 | 
						|
	for (i = 0; i < ppmu->n_counter; ++i)
 | 
						|
		cpuhw->pmcs[i] = read_pmc(i + 1);
 | 
						|
 | 
						|
	/* Try to find what caused the IRQ */
 | 
						|
	found = 0;
 | 
						|
	for (i = 0; i < ppmu->n_counter; ++i) {
 | 
						|
		if (!pmc_overflow(cpuhw->pmcs[i]))
 | 
						|
			continue;
 | 
						|
		if (is_limited_pmc(i + 1))
 | 
						|
			continue; /* these won't generate IRQs */
 | 
						|
		/*
 | 
						|
		 * We've found one that's overflowed.  For active
 | 
						|
		 * counters we need to log this.  For inactive
 | 
						|
		 * counters, we need to reset it anyway
 | 
						|
		 */
 | 
						|
		found = 1;
 | 
						|
		active = 0;
 | 
						|
		for (j = 0; j < cpuhw->n_events; ++j) {
 | 
						|
			event = cpuhw->event[j];
 | 
						|
			if (event->hw.idx == (i + 1)) {
 | 
						|
				active = 1;
 | 
						|
				record_and_restart(event, cpuhw->pmcs[i], regs);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Clear PACA_IRQ_PMI in case it was set by
 | 
						|
		 * set_pmi_irq_pending() when PMU was enabled
 | 
						|
		 * after accounting for interrupts.
 | 
						|
		 */
 | 
						|
		clear_pmi_irq_pending();
 | 
						|
 | 
						|
		if (!active)
 | 
						|
			/* reset non active counters that have overflowed */
 | 
						|
			write_pmc(i + 1, 0);
 | 
						|
	}
 | 
						|
	if (!found && pvr_version_is(PVR_POWER7)) {
 | 
						|
		/* check active counters for special buggy p7 overflow */
 | 
						|
		for (i = 0; i < cpuhw->n_events; ++i) {
 | 
						|
			event = cpuhw->event[i];
 | 
						|
			if (!event->hw.idx || is_limited_pmc(event->hw.idx))
 | 
						|
				continue;
 | 
						|
			if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
 | 
						|
				/* event has overflowed in a buggy way*/
 | 
						|
				found = 1;
 | 
						|
				record_and_restart(event,
 | 
						|
						   cpuhw->pmcs[event->hw.idx - 1],
 | 
						|
						   regs);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * During system wide profiling or while specific CPU is monitored for an
 | 
						|
	 * event, some corner cases could cause PMC to overflow in idle path. This
 | 
						|
	 * will trigger a PMI after waking up from idle. Since counter values are _not_
 | 
						|
	 * saved/restored in idle path, can lead to below "Can't find PMC" message.
 | 
						|
	 */
 | 
						|
	if (unlikely(!found) && !arch_irq_disabled_regs(regs))
 | 
						|
		printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Reset MMCR0 to its normal value.  This will set PMXE and
 | 
						|
	 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
 | 
						|
	 * and thus allow interrupts to occur again.
 | 
						|
	 * XXX might want to use MSR.PM to keep the events frozen until
 | 
						|
	 * we get back out of this interrupt.
 | 
						|
	 */
 | 
						|
	write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
 | 
						|
 | 
						|
	/* Clear the cpuhw->pmcs */
 | 
						|
	memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void perf_event_interrupt(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	u64 start_clock = sched_clock();
 | 
						|
 | 
						|
	__perf_event_interrupt(regs);
 | 
						|
	perf_sample_event_took(sched_clock() - start_clock);
 | 
						|
}
 | 
						|
 | 
						|
static int power_pmu_prepare_cpu(unsigned int cpu)
 | 
						|
{
 | 
						|
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
 | 
						|
 | 
						|
	if (ppmu) {
 | 
						|
		memset(cpuhw, 0, sizeof(*cpuhw));
 | 
						|
		cpuhw->mmcr.mmcr0 = MMCR0_FC;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t pmu_name_show(struct device *cdev,
 | 
						|
		struct device_attribute *attr,
 | 
						|
		char *buf)
 | 
						|
{
 | 
						|
	if (ppmu)
 | 
						|
		return sysfs_emit(buf, "%s", ppmu->name);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static DEVICE_ATTR_RO(pmu_name);
 | 
						|
 | 
						|
static struct attribute *pmu_caps_attrs[] = {
 | 
						|
	&dev_attr_pmu_name.attr,
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group pmu_caps_group = {
 | 
						|
	.name  = "caps",
 | 
						|
	.attrs = pmu_caps_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static const struct attribute_group *pmu_caps_groups[] = {
 | 
						|
	&pmu_caps_group,
 | 
						|
	NULL,
 | 
						|
};
 | 
						|
 | 
						|
int __init register_power_pmu(struct power_pmu *pmu)
 | 
						|
{
 | 
						|
	if (ppmu)
 | 
						|
		return -EBUSY;		/* something's already registered */
 | 
						|
 | 
						|
	ppmu = pmu;
 | 
						|
	pr_info("%s performance monitor hardware support registered\n",
 | 
						|
		pmu->name);
 | 
						|
 | 
						|
	power_pmu.attr_groups = ppmu->attr_groups;
 | 
						|
 | 
						|
	if (ppmu->flags & PPMU_ARCH_207S)
 | 
						|
		power_pmu.attr_update = pmu_caps_groups;
 | 
						|
 | 
						|
	power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
 | 
						|
 | 
						|
#ifdef MSR_HV
 | 
						|
	/*
 | 
						|
	 * Use FCHV to ignore kernel events if MSR.HV is set.
 | 
						|
	 */
 | 
						|
	if (mfmsr() & MSR_HV)
 | 
						|
		freeze_events_kernel = MMCR0_FCHV;
 | 
						|
#endif /* CONFIG_PPC64 */
 | 
						|
 | 
						|
	perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
 | 
						|
	cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
 | 
						|
			  power_pmu_prepare_cpu, NULL);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_PPC64
 | 
						|
static bool pmu_override = false;
 | 
						|
static unsigned long pmu_override_val;
 | 
						|
static void do_pmu_override(void *data)
 | 
						|
{
 | 
						|
	ppc_set_pmu_inuse(1);
 | 
						|
	if (pmu_override_val)
 | 
						|
		mtspr(SPRN_MMCR1, pmu_override_val);
 | 
						|
	mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
 | 
						|
}
 | 
						|
 | 
						|
static int __init init_ppc64_pmu(void)
 | 
						|
{
 | 
						|
	if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
 | 
						|
		pr_warn("disabling perf due to pmu_override= command line option.\n");
 | 
						|
		on_each_cpu(do_pmu_override, NULL, 1);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* run through all the pmu drivers one at a time */
 | 
						|
	if (!init_power5_pmu())
 | 
						|
		return 0;
 | 
						|
	else if (!init_power5p_pmu())
 | 
						|
		return 0;
 | 
						|
	else if (!init_power6_pmu())
 | 
						|
		return 0;
 | 
						|
	else if (!init_power7_pmu())
 | 
						|
		return 0;
 | 
						|
	else if (!init_power8_pmu())
 | 
						|
		return 0;
 | 
						|
	else if (!init_power9_pmu())
 | 
						|
		return 0;
 | 
						|
	else if (!init_power10_pmu())
 | 
						|
		return 0;
 | 
						|
	else if (!init_ppc970_pmu())
 | 
						|
		return 0;
 | 
						|
	else
 | 
						|
		return init_generic_compat_pmu();
 | 
						|
}
 | 
						|
early_initcall(init_ppc64_pmu);
 | 
						|
 | 
						|
static int __init pmu_setup(char *str)
 | 
						|
{
 | 
						|
	unsigned long val;
 | 
						|
 | 
						|
	if (!early_cpu_has_feature(CPU_FTR_HVMODE))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	pmu_override = true;
 | 
						|
 | 
						|
	if (kstrtoul(str, 0, &val))
 | 
						|
		val = 0;
 | 
						|
 | 
						|
	pmu_override_val = val;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
__setup("pmu_override=", pmu_setup);
 | 
						|
 | 
						|
#endif
 |