mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	Now that we have the means to do insertion sorts of small in-memory subsets of an xfarray, use it to improve the quicksort pivot algorithm by reading 7 records into memory and finding the median of that. This should prevent bad partitioning when a[lo] and a[hi] end up next to each other in the final sort, which can happen when sorting for cntbt repair when the free space is extremely fragmented (e.g. generic/176). This doesn't speed up the average quicksort run by much, but it will (hopefully) avoid the quadratic time collapse for which quicksort is famous. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Kent Overstreet <kent.overstreet@linux.dev> Reviewed-by: Dave Chinner <dchinner@redhat.com>
		
			
				
	
	
		
			1084 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1084 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-or-later
 | 
						|
/*
 | 
						|
 * Copyright (C) 2021-2023 Oracle.  All Rights Reserved.
 | 
						|
 * Author: Darrick J. Wong <djwong@kernel.org>
 | 
						|
 */
 | 
						|
#include "xfs.h"
 | 
						|
#include "xfs_fs.h"
 | 
						|
#include "xfs_shared.h"
 | 
						|
#include "xfs_format.h"
 | 
						|
#include "scrub/xfile.h"
 | 
						|
#include "scrub/xfarray.h"
 | 
						|
#include "scrub/scrub.h"
 | 
						|
#include "scrub/trace.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Large Arrays of Fixed-Size Records
 | 
						|
 * ==================================
 | 
						|
 *
 | 
						|
 * This memory array uses an xfile (which itself is a memfd "file") to store
 | 
						|
 * large numbers of fixed-size records in memory that can be paged out.  This
 | 
						|
 * puts less stress on the memory reclaim algorithms during an online repair
 | 
						|
 * because we don't have to pin so much memory.  However, array access is less
 | 
						|
 * direct than would be in a regular memory array.  Access to the array is
 | 
						|
 * performed via indexed load and store methods, and an append method is
 | 
						|
 * provided for convenience.  Array elements can be unset, which sets them to
 | 
						|
 * all zeroes.  Unset entries are skipped during iteration, though direct loads
 | 
						|
 * will return a zeroed buffer.  Callers are responsible for concurrency
 | 
						|
 * control.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Pointer to scratch space.  Because we can't access the xfile data directly,
 | 
						|
 * we allocate a small amount of memory on the end of the xfarray structure to
 | 
						|
 * buffer array items when we need space to store values temporarily.
 | 
						|
 */
 | 
						|
static inline void *xfarray_scratch(struct xfarray *array)
 | 
						|
{
 | 
						|
	return (array + 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute array index given an xfile offset. */
 | 
						|
static xfarray_idx_t
 | 
						|
xfarray_idx(
 | 
						|
	struct xfarray	*array,
 | 
						|
	loff_t		pos)
 | 
						|
{
 | 
						|
	if (array->obj_size_log >= 0)
 | 
						|
		return (xfarray_idx_t)pos >> array->obj_size_log;
 | 
						|
 | 
						|
	return div_u64((xfarray_idx_t)pos, array->obj_size);
 | 
						|
}
 | 
						|
 | 
						|
/* Compute xfile offset of array element. */
 | 
						|
static inline loff_t xfarray_pos(struct xfarray *array, xfarray_idx_t idx)
 | 
						|
{
 | 
						|
	if (array->obj_size_log >= 0)
 | 
						|
		return idx << array->obj_size_log;
 | 
						|
 | 
						|
	return idx * array->obj_size;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize a big memory array.  Array records cannot be larger than a
 | 
						|
 * page, and the array cannot span more bytes than the page cache supports.
 | 
						|
 * If @required_capacity is nonzero, the maximum array size will be set to this
 | 
						|
 * quantity and the array creation will fail if the underlying storage cannot
 | 
						|
 * support that many records.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfarray_create(
 | 
						|
	const char		*description,
 | 
						|
	unsigned long long	required_capacity,
 | 
						|
	size_t			obj_size,
 | 
						|
	struct xfarray		**arrayp)
 | 
						|
{
 | 
						|
	struct xfarray		*array;
 | 
						|
	struct xfile		*xfile;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(obj_size < PAGE_SIZE);
 | 
						|
 | 
						|
	error = xfile_create(description, 0, &xfile);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	error = -ENOMEM;
 | 
						|
	array = kzalloc(sizeof(struct xfarray) + obj_size, XCHK_GFP_FLAGS);
 | 
						|
	if (!array)
 | 
						|
		goto out_xfile;
 | 
						|
 | 
						|
	array->xfile = xfile;
 | 
						|
	array->obj_size = obj_size;
 | 
						|
 | 
						|
	if (is_power_of_2(obj_size))
 | 
						|
		array->obj_size_log = ilog2(obj_size);
 | 
						|
	else
 | 
						|
		array->obj_size_log = -1;
 | 
						|
 | 
						|
	array->max_nr = xfarray_idx(array, MAX_LFS_FILESIZE);
 | 
						|
	trace_xfarray_create(array, required_capacity);
 | 
						|
 | 
						|
	if (required_capacity > 0) {
 | 
						|
		if (array->max_nr < required_capacity) {
 | 
						|
			error = -ENOMEM;
 | 
						|
			goto out_xfarray;
 | 
						|
		}
 | 
						|
		array->max_nr = required_capacity;
 | 
						|
	}
 | 
						|
 | 
						|
	*arrayp = array;
 | 
						|
	return 0;
 | 
						|
 | 
						|
out_xfarray:
 | 
						|
	kfree(array);
 | 
						|
out_xfile:
 | 
						|
	xfile_destroy(xfile);
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
/* Destroy the array. */
 | 
						|
void
 | 
						|
xfarray_destroy(
 | 
						|
	struct xfarray	*array)
 | 
						|
{
 | 
						|
	xfile_destroy(array->xfile);
 | 
						|
	kfree(array);
 | 
						|
}
 | 
						|
 | 
						|
/* Load an element from the array. */
 | 
						|
int
 | 
						|
xfarray_load(
 | 
						|
	struct xfarray	*array,
 | 
						|
	xfarray_idx_t	idx,
 | 
						|
	void		*ptr)
 | 
						|
{
 | 
						|
	if (idx >= array->nr)
 | 
						|
		return -ENODATA;
 | 
						|
 | 
						|
	return xfile_obj_load(array->xfile, ptr, array->obj_size,
 | 
						|
			xfarray_pos(array, idx));
 | 
						|
}
 | 
						|
 | 
						|
/* Is this array element potentially unset? */
 | 
						|
static inline bool
 | 
						|
xfarray_is_unset(
 | 
						|
	struct xfarray	*array,
 | 
						|
	loff_t		pos)
 | 
						|
{
 | 
						|
	void		*temp = xfarray_scratch(array);
 | 
						|
	int		error;
 | 
						|
 | 
						|
	if (array->unset_slots == 0)
 | 
						|
		return false;
 | 
						|
 | 
						|
	error = xfile_obj_load(array->xfile, temp, array->obj_size, pos);
 | 
						|
	if (!error && xfarray_element_is_null(array, temp))
 | 
						|
		return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unset an array element.  If @idx is the last element in the array, the
 | 
						|
 * array will be truncated.  Otherwise, the entry will be zeroed.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfarray_unset(
 | 
						|
	struct xfarray	*array,
 | 
						|
	xfarray_idx_t	idx)
 | 
						|
{
 | 
						|
	void		*temp = xfarray_scratch(array);
 | 
						|
	loff_t		pos = xfarray_pos(array, idx);
 | 
						|
	int		error;
 | 
						|
 | 
						|
	if (idx >= array->nr)
 | 
						|
		return -ENODATA;
 | 
						|
 | 
						|
	if (idx == array->nr - 1) {
 | 
						|
		array->nr--;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (xfarray_is_unset(array, pos))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	memset(temp, 0, array->obj_size);
 | 
						|
	error = xfile_obj_store(array->xfile, temp, array->obj_size, pos);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	array->unset_slots++;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Store an element in the array.  The element must not be completely zeroed,
 | 
						|
 * because those are considered unset sparse elements.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfarray_store(
 | 
						|
	struct xfarray	*array,
 | 
						|
	xfarray_idx_t	idx,
 | 
						|
	const void	*ptr)
 | 
						|
{
 | 
						|
	int		ret;
 | 
						|
 | 
						|
	if (idx >= array->max_nr)
 | 
						|
		return -EFBIG;
 | 
						|
 | 
						|
	ASSERT(!xfarray_element_is_null(array, ptr));
 | 
						|
 | 
						|
	ret = xfile_obj_store(array->xfile, ptr, array->obj_size,
 | 
						|
			xfarray_pos(array, idx));
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	array->nr = max(array->nr, idx + 1);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Is this array element NULL? */
 | 
						|
bool
 | 
						|
xfarray_element_is_null(
 | 
						|
	struct xfarray	*array,
 | 
						|
	const void	*ptr)
 | 
						|
{
 | 
						|
	return !memchr_inv(ptr, 0, array->obj_size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Store an element anywhere in the array that is unset.  If there are no
 | 
						|
 * unset slots, append the element to the array.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfarray_store_anywhere(
 | 
						|
	struct xfarray	*array,
 | 
						|
	const void	*ptr)
 | 
						|
{
 | 
						|
	void		*temp = xfarray_scratch(array);
 | 
						|
	loff_t		endpos = xfarray_pos(array, array->nr);
 | 
						|
	loff_t		pos;
 | 
						|
	int		error;
 | 
						|
 | 
						|
	/* Find an unset slot to put it in. */
 | 
						|
	for (pos = 0;
 | 
						|
	     pos < endpos && array->unset_slots > 0;
 | 
						|
	     pos += array->obj_size) {
 | 
						|
		error = xfile_obj_load(array->xfile, temp, array->obj_size,
 | 
						|
				pos);
 | 
						|
		if (error || !xfarray_element_is_null(array, temp))
 | 
						|
			continue;
 | 
						|
 | 
						|
		error = xfile_obj_store(array->xfile, ptr, array->obj_size,
 | 
						|
				pos);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
 | 
						|
		array->unset_slots--;
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* No unset slots found; attach it on the end. */
 | 
						|
	array->unset_slots = 0;
 | 
						|
	return xfarray_append(array, ptr);
 | 
						|
}
 | 
						|
 | 
						|
/* Return length of array. */
 | 
						|
uint64_t
 | 
						|
xfarray_length(
 | 
						|
	struct xfarray	*array)
 | 
						|
{
 | 
						|
	return array->nr;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Decide which array item we're going to read as part of an _iter_get.
 | 
						|
 * @cur is the array index, and @pos is the file offset of that array index in
 | 
						|
 * the backing xfile.  Returns ENODATA if we reach the end of the records.
 | 
						|
 *
 | 
						|
 * Reading from a hole in a sparse xfile causes page instantiation, so for
 | 
						|
 * iterating a (possibly sparse) array we need to figure out if the cursor is
 | 
						|
 * pointing at a totally uninitialized hole and move the cursor up if
 | 
						|
 * necessary.
 | 
						|
 */
 | 
						|
static inline int
 | 
						|
xfarray_find_data(
 | 
						|
	struct xfarray	*array,
 | 
						|
	xfarray_idx_t	*cur,
 | 
						|
	loff_t		*pos)
 | 
						|
{
 | 
						|
	unsigned int	pgoff = offset_in_page(*pos);
 | 
						|
	loff_t		end_pos = *pos + array->obj_size - 1;
 | 
						|
	loff_t		new_pos;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If the current array record is not adjacent to a page boundary, we
 | 
						|
	 * are in the middle of the page.  We do not need to move the cursor.
 | 
						|
	 */
 | 
						|
	if (pgoff != 0 && pgoff + array->obj_size - 1 < PAGE_SIZE)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Call SEEK_DATA on the last byte in the record we're about to read.
 | 
						|
	 * If the record ends at (or crosses) the end of a page then we know
 | 
						|
	 * that the first byte of the record is backed by pages and don't need
 | 
						|
	 * to query it.  If instead the record begins at the start of the page
 | 
						|
	 * then we know that querying the last byte is just as good as querying
 | 
						|
	 * the first byte, since records cannot be larger than a page.
 | 
						|
	 *
 | 
						|
	 * If the call returns the same file offset, we know this record is
 | 
						|
	 * backed by real pages.  We do not need to move the cursor.
 | 
						|
	 */
 | 
						|
	new_pos = xfile_seek_data(array->xfile, end_pos);
 | 
						|
	if (new_pos == -ENXIO)
 | 
						|
		return -ENODATA;
 | 
						|
	if (new_pos < 0)
 | 
						|
		return new_pos;
 | 
						|
	if (new_pos == end_pos)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Otherwise, SEEK_DATA told us how far up to move the file pointer to
 | 
						|
	 * find more data.  Move the array index to the first record past the
 | 
						|
	 * byte offset we were given.
 | 
						|
	 */
 | 
						|
	new_pos = roundup_64(new_pos, array->obj_size);
 | 
						|
	*cur = xfarray_idx(array, new_pos);
 | 
						|
	*pos = xfarray_pos(array, *cur);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Starting at *idx, fetch the next non-null array entry and advance the index
 | 
						|
 * to set up the next _load_next call.  Returns ENODATA if we reach the end of
 | 
						|
 * the array.  Callers must set @*idx to XFARRAY_CURSOR_INIT before the first
 | 
						|
 * call to this function.
 | 
						|
 */
 | 
						|
int
 | 
						|
xfarray_load_next(
 | 
						|
	struct xfarray	*array,
 | 
						|
	xfarray_idx_t	*idx,
 | 
						|
	void		*rec)
 | 
						|
{
 | 
						|
	xfarray_idx_t	cur = *idx;
 | 
						|
	loff_t		pos = xfarray_pos(array, cur);
 | 
						|
	int		error;
 | 
						|
 | 
						|
	do {
 | 
						|
		if (cur >= array->nr)
 | 
						|
			return -ENODATA;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Ask the backing store for the location of next possible
 | 
						|
		 * written record, then retrieve that record.
 | 
						|
		 */
 | 
						|
		error = xfarray_find_data(array, &cur, &pos);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
		error = xfarray_load(array, cur, rec);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
 | 
						|
		cur++;
 | 
						|
		pos += array->obj_size;
 | 
						|
	} while (xfarray_element_is_null(array, rec));
 | 
						|
 | 
						|
	*idx = cur;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Sorting functions */
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
# define xfarray_sort_bump_loads(si)	do { (si)->loads++; } while (0)
 | 
						|
# define xfarray_sort_bump_stores(si)	do { (si)->stores++; } while (0)
 | 
						|
# define xfarray_sort_bump_compares(si)	do { (si)->compares++; } while (0)
 | 
						|
# define xfarray_sort_bump_heapsorts(si) do { (si)->heapsorts++; } while (0)
 | 
						|
#else
 | 
						|
# define xfarray_sort_bump_loads(si)
 | 
						|
# define xfarray_sort_bump_stores(si)
 | 
						|
# define xfarray_sort_bump_compares(si)
 | 
						|
# define xfarray_sort_bump_heapsorts(si)
 | 
						|
#endif /* DEBUG */
 | 
						|
 | 
						|
/* Load an array element for sorting. */
 | 
						|
static inline int
 | 
						|
xfarray_sort_load(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		idx,
 | 
						|
	void			*ptr)
 | 
						|
{
 | 
						|
	xfarray_sort_bump_loads(si);
 | 
						|
	return xfarray_load(si->array, idx, ptr);
 | 
						|
}
 | 
						|
 | 
						|
/* Store an array element for sorting. */
 | 
						|
static inline int
 | 
						|
xfarray_sort_store(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		idx,
 | 
						|
	void			*ptr)
 | 
						|
{
 | 
						|
	xfarray_sort_bump_stores(si);
 | 
						|
	return xfarray_store(si->array, idx, ptr);
 | 
						|
}
 | 
						|
 | 
						|
/* Compare an array element for sorting. */
 | 
						|
static inline int
 | 
						|
xfarray_sort_cmp(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	const void		*a,
 | 
						|
	const void		*b)
 | 
						|
{
 | 
						|
	xfarray_sort_bump_compares(si);
 | 
						|
	return si->cmp_fn(a, b);
 | 
						|
}
 | 
						|
 | 
						|
/* Return a pointer to the low index stack for quicksort partitioning. */
 | 
						|
static inline xfarray_idx_t *xfarray_sortinfo_lo(struct xfarray_sortinfo *si)
 | 
						|
{
 | 
						|
	return (xfarray_idx_t *)(si + 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Return a pointer to the high index stack for quicksort partitioning. */
 | 
						|
static inline xfarray_idx_t *xfarray_sortinfo_hi(struct xfarray_sortinfo *si)
 | 
						|
{
 | 
						|
	return xfarray_sortinfo_lo(si) + si->max_stack_depth;
 | 
						|
}
 | 
						|
 | 
						|
/* Size of each element in the quicksort pivot array. */
 | 
						|
static inline size_t
 | 
						|
xfarray_pivot_rec_sz(
 | 
						|
	struct xfarray		*array)
 | 
						|
{
 | 
						|
	return round_up(array->obj_size, 8) + sizeof(xfarray_idx_t);
 | 
						|
}
 | 
						|
 | 
						|
/* Allocate memory to handle the sort. */
 | 
						|
static inline int
 | 
						|
xfarray_sortinfo_alloc(
 | 
						|
	struct xfarray		*array,
 | 
						|
	xfarray_cmp_fn		cmp_fn,
 | 
						|
	unsigned int		flags,
 | 
						|
	struct xfarray_sortinfo	**infop)
 | 
						|
{
 | 
						|
	struct xfarray_sortinfo	*si;
 | 
						|
	size_t			nr_bytes = sizeof(struct xfarray_sortinfo);
 | 
						|
	size_t			pivot_rec_sz = xfarray_pivot_rec_sz(array);
 | 
						|
	int			max_stack_depth;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The median-of-nine pivot algorithm doesn't work if a subset has
 | 
						|
	 * fewer than 9 items.  Make sure the in-memory sort will always take
 | 
						|
	 * over for subsets where this wouldn't be the case.
 | 
						|
	 */
 | 
						|
	BUILD_BUG_ON(XFARRAY_QSORT_PIVOT_NR >= XFARRAY_ISORT_NR);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Tail-call recursion during the partitioning phase means that
 | 
						|
	 * quicksort will never recurse more than log2(nr) times.  We need one
 | 
						|
	 * extra level of stack to hold the initial parameters.  In-memory
 | 
						|
	 * sort will always take care of the last few levels of recursion for
 | 
						|
	 * us, so we can reduce the stack depth by that much.
 | 
						|
	 */
 | 
						|
	max_stack_depth = ilog2(array->nr) + 1 - (XFARRAY_ISORT_SHIFT - 1);
 | 
						|
	if (max_stack_depth < 1)
 | 
						|
		max_stack_depth = 1;
 | 
						|
 | 
						|
	/* Each level of quicksort uses a lo and a hi index */
 | 
						|
	nr_bytes += max_stack_depth * sizeof(xfarray_idx_t) * 2;
 | 
						|
 | 
						|
	/* Scratchpad for in-memory sort, or finding the pivot */
 | 
						|
	nr_bytes += max_t(size_t,
 | 
						|
			(XFARRAY_QSORT_PIVOT_NR + 1) * pivot_rec_sz,
 | 
						|
			XFARRAY_ISORT_NR * array->obj_size);
 | 
						|
 | 
						|
	si = kvzalloc(nr_bytes, XCHK_GFP_FLAGS);
 | 
						|
	if (!si)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	si->array = array;
 | 
						|
	si->cmp_fn = cmp_fn;
 | 
						|
	si->flags = flags;
 | 
						|
	si->max_stack_depth = max_stack_depth;
 | 
						|
	si->max_stack_used = 1;
 | 
						|
 | 
						|
	xfarray_sortinfo_lo(si)[0] = 0;
 | 
						|
	xfarray_sortinfo_hi(si)[0] = array->nr - 1;
 | 
						|
 | 
						|
	trace_xfarray_sort(si, nr_bytes);
 | 
						|
	*infop = si;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Should this sort be terminated by a fatal signal? */
 | 
						|
static inline bool
 | 
						|
xfarray_sort_terminated(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	int			*error)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * If preemption is disabled, we need to yield to the scheduler every
 | 
						|
	 * few seconds so that we don't run afoul of the soft lockup watchdog
 | 
						|
	 * or RCU stall detector.
 | 
						|
	 */
 | 
						|
	cond_resched();
 | 
						|
 | 
						|
	if ((si->flags & XFARRAY_SORT_KILLABLE) &&
 | 
						|
	    fatal_signal_pending(current)) {
 | 
						|
		if (*error == 0)
 | 
						|
			*error = -EINTR;
 | 
						|
		return true;
 | 
						|
	}
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Do we want an in-memory sort? */
 | 
						|
static inline bool
 | 
						|
xfarray_want_isort(
 | 
						|
	struct xfarray_sortinfo *si,
 | 
						|
	xfarray_idx_t		start,
 | 
						|
	xfarray_idx_t		end)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * For array subsets that fit in the scratchpad, it's much faster to
 | 
						|
	 * use the kernel's heapsort than quicksort's stack machine.
 | 
						|
	 */
 | 
						|
	return (end - start) < XFARRAY_ISORT_NR;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the scratch space within the sortinfo structure. */
 | 
						|
static inline void *xfarray_sortinfo_isort_scratch(struct xfarray_sortinfo *si)
 | 
						|
{
 | 
						|
	return xfarray_sortinfo_hi(si) + si->max_stack_depth;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sort a small number of array records using scratchpad memory.  The records
 | 
						|
 * need not be contiguous in the xfile's memory pages.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfarray_isort(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		lo,
 | 
						|
	xfarray_idx_t		hi)
 | 
						|
{
 | 
						|
	void			*scratch = xfarray_sortinfo_isort_scratch(si);
 | 
						|
	loff_t			lo_pos = xfarray_pos(si->array, lo);
 | 
						|
	loff_t			len = xfarray_pos(si->array, hi - lo + 1);
 | 
						|
	int			error;
 | 
						|
 | 
						|
	trace_xfarray_isort(si, lo, hi);
 | 
						|
 | 
						|
	xfarray_sort_bump_loads(si);
 | 
						|
	error = xfile_obj_load(si->array->xfile, scratch, len, lo_pos);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfarray_sort_bump_heapsorts(si);
 | 
						|
	sort(scratch, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);
 | 
						|
 | 
						|
	xfarray_sort_bump_stores(si);
 | 
						|
	return xfile_obj_store(si->array->xfile, scratch, len, lo_pos);
 | 
						|
}
 | 
						|
 | 
						|
/* Grab a page for sorting records. */
 | 
						|
static inline int
 | 
						|
xfarray_sort_get_page(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	loff_t			pos,
 | 
						|
	uint64_t		len)
 | 
						|
{
 | 
						|
	int			error;
 | 
						|
 | 
						|
	error = xfile_get_page(si->array->xfile, pos, len, &si->xfpage);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * xfile pages must never be mapped into userspace, so we skip the
 | 
						|
	 * dcache flush when mapping the page.
 | 
						|
	 */
 | 
						|
	si->page_kaddr = kmap_local_page(si->xfpage.page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Release a page we grabbed for sorting records. */
 | 
						|
static inline int
 | 
						|
xfarray_sort_put_page(
 | 
						|
	struct xfarray_sortinfo	*si)
 | 
						|
{
 | 
						|
	if (!si->page_kaddr)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	kunmap_local(si->page_kaddr);
 | 
						|
	si->page_kaddr = NULL;
 | 
						|
 | 
						|
	return xfile_put_page(si->array->xfile, &si->xfpage);
 | 
						|
}
 | 
						|
 | 
						|
/* Decide if these records are eligible for in-page sorting. */
 | 
						|
static inline bool
 | 
						|
xfarray_want_pagesort(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		lo,
 | 
						|
	xfarray_idx_t		hi)
 | 
						|
{
 | 
						|
	pgoff_t			lo_page;
 | 
						|
	pgoff_t			hi_page;
 | 
						|
	loff_t			end_pos;
 | 
						|
 | 
						|
	/* We can only map one page at a time. */
 | 
						|
	lo_page = xfarray_pos(si->array, lo) >> PAGE_SHIFT;
 | 
						|
	end_pos = xfarray_pos(si->array, hi) + si->array->obj_size - 1;
 | 
						|
	hi_page = end_pos >> PAGE_SHIFT;
 | 
						|
 | 
						|
	return lo_page == hi_page;
 | 
						|
}
 | 
						|
 | 
						|
/* Sort a bunch of records that all live in the same memory page. */
 | 
						|
STATIC int
 | 
						|
xfarray_pagesort(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		lo,
 | 
						|
	xfarray_idx_t		hi)
 | 
						|
{
 | 
						|
	void			*startp;
 | 
						|
	loff_t			lo_pos = xfarray_pos(si->array, lo);
 | 
						|
	uint64_t		len = xfarray_pos(si->array, hi - lo);
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	trace_xfarray_pagesort(si, lo, hi);
 | 
						|
 | 
						|
	xfarray_sort_bump_loads(si);
 | 
						|
	error = xfarray_sort_get_page(si, lo_pos, len);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	xfarray_sort_bump_heapsorts(si);
 | 
						|
	startp = si->page_kaddr + offset_in_page(lo_pos);
 | 
						|
	sort(startp, hi - lo + 1, si->array->obj_size, si->cmp_fn, NULL);
 | 
						|
 | 
						|
	xfarray_sort_bump_stores(si);
 | 
						|
	return xfarray_sort_put_page(si);
 | 
						|
}
 | 
						|
 | 
						|
/* Return a pointer to the xfarray pivot record within the sortinfo struct. */
 | 
						|
static inline void *xfarray_sortinfo_pivot(struct xfarray_sortinfo *si)
 | 
						|
{
 | 
						|
	return xfarray_sortinfo_hi(si) + si->max_stack_depth;
 | 
						|
}
 | 
						|
 | 
						|
/* Return a pointer to the start of the pivot array. */
 | 
						|
static inline void *
 | 
						|
xfarray_sortinfo_pivot_array(
 | 
						|
	struct xfarray_sortinfo	*si)
 | 
						|
{
 | 
						|
	return xfarray_sortinfo_pivot(si) + si->array->obj_size;
 | 
						|
}
 | 
						|
 | 
						|
/* The xfarray record is stored at the start of each pivot array element. */
 | 
						|
static inline void *
 | 
						|
xfarray_pivot_array_rec(
 | 
						|
	void			*pa,
 | 
						|
	size_t			pa_recsz,
 | 
						|
	unsigned int		pa_idx)
 | 
						|
{
 | 
						|
	return pa + (pa_recsz * pa_idx);
 | 
						|
}
 | 
						|
 | 
						|
/* The xfarray index is stored at the end of each pivot array element. */
 | 
						|
static inline xfarray_idx_t *
 | 
						|
xfarray_pivot_array_idx(
 | 
						|
	void			*pa,
 | 
						|
	size_t			pa_recsz,
 | 
						|
	unsigned int		pa_idx)
 | 
						|
{
 | 
						|
	return xfarray_pivot_array_rec(pa, pa_recsz, pa_idx + 1) -
 | 
						|
			sizeof(xfarray_idx_t);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Find a pivot value for quicksort partitioning, swap it with a[lo], and save
 | 
						|
 * the cached pivot record for the next step.
 | 
						|
 *
 | 
						|
 * Load evenly-spaced records within the given range into memory, sort them,
 | 
						|
 * and choose the pivot from the median record.  Using multiple points will
 | 
						|
 * improve the quality of the pivot selection, and hopefully avoid the worst
 | 
						|
 * quicksort behavior, since our array values are nearly always evenly sorted.
 | 
						|
 */
 | 
						|
STATIC int
 | 
						|
xfarray_qsort_pivot(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		lo,
 | 
						|
	xfarray_idx_t		hi)
 | 
						|
{
 | 
						|
	void			*pivot = xfarray_sortinfo_pivot(si);
 | 
						|
	void			*parray = xfarray_sortinfo_pivot_array(si);
 | 
						|
	void			*recp;
 | 
						|
	xfarray_idx_t		*idxp;
 | 
						|
	xfarray_idx_t		step = (hi - lo) / (XFARRAY_QSORT_PIVOT_NR - 1);
 | 
						|
	size_t			pivot_rec_sz = xfarray_pivot_rec_sz(si->array);
 | 
						|
	int			i, j;
 | 
						|
	int			error;
 | 
						|
 | 
						|
	ASSERT(step > 0);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Load the xfarray indexes of the records we intend to sample into the
 | 
						|
	 * pivot array.
 | 
						|
	 */
 | 
						|
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, 0);
 | 
						|
	*idxp = lo;
 | 
						|
	for (i = 1; i < XFARRAY_QSORT_PIVOT_NR - 1; i++) {
 | 
						|
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
 | 
						|
		*idxp = lo + (i * step);
 | 
						|
	}
 | 
						|
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
 | 
						|
			XFARRAY_QSORT_PIVOT_NR - 1);
 | 
						|
	*idxp = hi;
 | 
						|
 | 
						|
	/* Load the selected xfarray records into the pivot array. */
 | 
						|
	for (i = 0; i < XFARRAY_QSORT_PIVOT_NR; i++) {
 | 
						|
		xfarray_idx_t	idx;
 | 
						|
 | 
						|
		recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, i);
 | 
						|
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
 | 
						|
 | 
						|
		/* No unset records; load directly into the array. */
 | 
						|
		if (likely(si->array->unset_slots == 0)) {
 | 
						|
			error = xfarray_sort_load(si, *idxp, recp);
 | 
						|
			if (error)
 | 
						|
				return error;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Load non-null records into the scratchpad without changing
 | 
						|
		 * the xfarray_idx_t in the pivot array.
 | 
						|
		 */
 | 
						|
		idx = *idxp;
 | 
						|
		xfarray_sort_bump_loads(si);
 | 
						|
		error = xfarray_load_next(si->array, &idx, recp);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	xfarray_sort_bump_heapsorts(si);
 | 
						|
	sort(parray, XFARRAY_QSORT_PIVOT_NR, pivot_rec_sz, si->cmp_fn, NULL);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We sorted the pivot array records (which includes the xfarray
 | 
						|
	 * indices) in xfarray record order.  The median element of the pivot
 | 
						|
	 * array contains the xfarray record that we will use as the pivot.
 | 
						|
	 * Copy that xfarray record to the designated space.
 | 
						|
	 */
 | 
						|
	recp = xfarray_pivot_array_rec(parray, pivot_rec_sz,
 | 
						|
			XFARRAY_QSORT_PIVOT_NR / 2);
 | 
						|
	memcpy(pivot, recp, si->array->obj_size);
 | 
						|
 | 
						|
	/* If the pivot record we chose was already in a[lo] then we're done. */
 | 
						|
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
 | 
						|
			XFARRAY_QSORT_PIVOT_NR / 2);
 | 
						|
	if (*idxp == lo)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Find the cached copy of a[lo] in the pivot array so that we can swap
 | 
						|
	 * a[lo] and a[pivot].
 | 
						|
	 */
 | 
						|
	for (i = 0, j = -1; i < XFARRAY_QSORT_PIVOT_NR; i++) {
 | 
						|
		idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz, i);
 | 
						|
		if (*idxp == lo)
 | 
						|
			j = i;
 | 
						|
	}
 | 
						|
	if (j < 0) {
 | 
						|
		ASSERT(j >= 0);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Swap a[lo] and a[pivot]. */
 | 
						|
	error = xfarray_sort_store(si, lo, pivot);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	recp = xfarray_pivot_array_rec(parray, pivot_rec_sz, j);
 | 
						|
	idxp = xfarray_pivot_array_idx(parray, pivot_rec_sz,
 | 
						|
			XFARRAY_QSORT_PIVOT_NR / 2);
 | 
						|
	return xfarray_sort_store(si, *idxp, recp);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Set up the pointers for the next iteration.  We push onto the stack all of
 | 
						|
 * the unsorted values between a[lo + 1] and a[end[i]], and we tweak the
 | 
						|
 * current stack frame to point to the unsorted values between a[beg[i]] and
 | 
						|
 * a[lo] so that those values will be sorted when we pop the stack.
 | 
						|
 */
 | 
						|
static inline int
 | 
						|
xfarray_qsort_push(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		*si_lo,
 | 
						|
	xfarray_idx_t		*si_hi,
 | 
						|
	xfarray_idx_t		lo,
 | 
						|
	xfarray_idx_t		hi)
 | 
						|
{
 | 
						|
	/* Check for stack overflows */
 | 
						|
	if (si->stack_depth >= si->max_stack_depth - 1) {
 | 
						|
		ASSERT(si->stack_depth < si->max_stack_depth - 1);
 | 
						|
		return -EFSCORRUPTED;
 | 
						|
	}
 | 
						|
 | 
						|
	si->max_stack_used = max_t(uint8_t, si->max_stack_used,
 | 
						|
					    si->stack_depth + 2);
 | 
						|
 | 
						|
	si_lo[si->stack_depth + 1] = lo + 1;
 | 
						|
	si_hi[si->stack_depth + 1] = si_hi[si->stack_depth];
 | 
						|
	si_hi[si->stack_depth++] = lo - 1;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Always start with the smaller of the two partitions to keep the
 | 
						|
	 * amount of recursion in check.
 | 
						|
	 */
 | 
						|
	if (si_hi[si->stack_depth]     - si_lo[si->stack_depth] >
 | 
						|
	    si_hi[si->stack_depth - 1] - si_lo[si->stack_depth - 1]) {
 | 
						|
		swap(si_lo[si->stack_depth], si_lo[si->stack_depth - 1]);
 | 
						|
		swap(si_hi[si->stack_depth], si_hi[si->stack_depth - 1]);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Load an element from the array into the first scratchpad and cache the page,
 | 
						|
 * if possible.
 | 
						|
 */
 | 
						|
static inline int
 | 
						|
xfarray_sort_load_cached(
 | 
						|
	struct xfarray_sortinfo	*si,
 | 
						|
	xfarray_idx_t		idx,
 | 
						|
	void			*ptr)
 | 
						|
{
 | 
						|
	loff_t			idx_pos = xfarray_pos(si->array, idx);
 | 
						|
	pgoff_t			startpage;
 | 
						|
	pgoff_t			endpage;
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If this load would split a page, release the cached page, if any,
 | 
						|
	 * and perform a traditional read.
 | 
						|
	 */
 | 
						|
	startpage = idx_pos >> PAGE_SHIFT;
 | 
						|
	endpage = (idx_pos + si->array->obj_size - 1) >> PAGE_SHIFT;
 | 
						|
	if (startpage != endpage) {
 | 
						|
		error = xfarray_sort_put_page(si);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
 | 
						|
		if (xfarray_sort_terminated(si, &error))
 | 
						|
			return error;
 | 
						|
 | 
						|
		return xfile_obj_load(si->array->xfile, ptr,
 | 
						|
				si->array->obj_size, idx_pos);
 | 
						|
	}
 | 
						|
 | 
						|
	/* If the cached page is not the one we want, release it. */
 | 
						|
	if (xfile_page_cached(&si->xfpage) &&
 | 
						|
	    xfile_page_index(&si->xfpage) != startpage) {
 | 
						|
		error = xfarray_sort_put_page(si);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we don't have a cached page (and we know the load is contained
 | 
						|
	 * in a single page) then grab it.
 | 
						|
	 */
 | 
						|
	if (!xfile_page_cached(&si->xfpage)) {
 | 
						|
		if (xfarray_sort_terminated(si, &error))
 | 
						|
			return error;
 | 
						|
 | 
						|
		error = xfarray_sort_get_page(si, startpage << PAGE_SHIFT,
 | 
						|
				PAGE_SIZE);
 | 
						|
		if (error)
 | 
						|
			return error;
 | 
						|
	}
 | 
						|
 | 
						|
	memcpy(ptr, si->page_kaddr + offset_in_page(idx_pos),
 | 
						|
			si->array->obj_size);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Sort the array elements via quicksort.  This implementation incorporates
 | 
						|
 * four optimizations discussed in Sedgewick:
 | 
						|
 *
 | 
						|
 * 1. Use an explicit stack of array indices to store the next array partition
 | 
						|
 *    to sort.  This helps us to avoid recursion in the call stack, which is
 | 
						|
 *    particularly expensive in the kernel.
 | 
						|
 *
 | 
						|
 * 2. For arrays with records in arbitrary or user-controlled order, choose the
 | 
						|
 *    pivot element using a median-of-nine decision tree.  This reduces the
 | 
						|
 *    probability of selecting a bad pivot value which causes worst case
 | 
						|
 *    behavior (i.e. partition sizes of 1).
 | 
						|
 *
 | 
						|
 * 3. The smaller of the two sub-partitions is pushed onto the stack to start
 | 
						|
 *    the next level of recursion, and the larger sub-partition replaces the
 | 
						|
 *    current stack frame.  This guarantees that we won't need more than
 | 
						|
 *    log2(nr) stack space.
 | 
						|
 *
 | 
						|
 * 4. For small sets, load the records into the scratchpad and run heapsort on
 | 
						|
 *    them because that is very fast.  In the author's experience, this yields
 | 
						|
 *    a ~10% reduction in runtime.
 | 
						|
 *
 | 
						|
 *    If a small set is contained entirely within a single xfile memory page,
 | 
						|
 *    map the page directly and run heap sort directly on the xfile page
 | 
						|
 *    instead of using the load/store interface.  This halves the runtime.
 | 
						|
 *
 | 
						|
 * 5. This optimization is specific to the implementation.  When converging lo
 | 
						|
 *    and hi after selecting a pivot, we will try to retain the xfile memory
 | 
						|
 *    page between load calls, which reduces run time by 50%.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * Due to the use of signed indices, we can only support up to 2^63 records.
 | 
						|
 * Files can only grow to 2^63 bytes, so this is not much of a limitation.
 | 
						|
 */
 | 
						|
#define QSORT_MAX_RECS		(1ULL << 63)
 | 
						|
 | 
						|
int
 | 
						|
xfarray_sort(
 | 
						|
	struct xfarray		*array,
 | 
						|
	xfarray_cmp_fn		cmp_fn,
 | 
						|
	unsigned int		flags)
 | 
						|
{
 | 
						|
	struct xfarray_sortinfo	*si;
 | 
						|
	xfarray_idx_t		*si_lo, *si_hi;
 | 
						|
	void			*pivot;
 | 
						|
	void			*scratch = xfarray_scratch(array);
 | 
						|
	xfarray_idx_t		lo, hi;
 | 
						|
	int			error = 0;
 | 
						|
 | 
						|
	if (array->nr < 2)
 | 
						|
		return 0;
 | 
						|
	if (array->nr >= QSORT_MAX_RECS)
 | 
						|
		return -E2BIG;
 | 
						|
 | 
						|
	error = xfarray_sortinfo_alloc(array, cmp_fn, flags, &si);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
	si_lo = xfarray_sortinfo_lo(si);
 | 
						|
	si_hi = xfarray_sortinfo_hi(si);
 | 
						|
	pivot = xfarray_sortinfo_pivot(si);
 | 
						|
 | 
						|
	while (si->stack_depth >= 0) {
 | 
						|
		lo = si_lo[si->stack_depth];
 | 
						|
		hi = si_hi[si->stack_depth];
 | 
						|
 | 
						|
		trace_xfarray_qsort(si, lo, hi);
 | 
						|
 | 
						|
		/* Nothing left in this partition to sort; pop stack. */
 | 
						|
		if (lo >= hi) {
 | 
						|
			si->stack_depth--;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If directly mapping the page and sorting can solve our
 | 
						|
		 * problems, we're done.
 | 
						|
		 */
 | 
						|
		if (xfarray_want_pagesort(si, lo, hi)) {
 | 
						|
			error = xfarray_pagesort(si, lo, hi);
 | 
						|
			if (error)
 | 
						|
				goto out_free;
 | 
						|
			si->stack_depth--;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* If insertion sort can solve our problems, we're done. */
 | 
						|
		if (xfarray_want_isort(si, lo, hi)) {
 | 
						|
			error = xfarray_isort(si, lo, hi);
 | 
						|
			if (error)
 | 
						|
				goto out_free;
 | 
						|
			si->stack_depth--;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Pick a pivot, move it to a[lo] and stash it. */
 | 
						|
		error = xfarray_qsort_pivot(si, lo, hi);
 | 
						|
		if (error)
 | 
						|
			goto out_free;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Rearrange a[lo..hi] such that everything smaller than the
 | 
						|
		 * pivot is on the left side of the range and everything larger
 | 
						|
		 * than the pivot is on the right side of the range.
 | 
						|
		 */
 | 
						|
		while (lo < hi) {
 | 
						|
			/*
 | 
						|
			 * Decrement hi until it finds an a[hi] less than the
 | 
						|
			 * pivot value.
 | 
						|
			 */
 | 
						|
			error = xfarray_sort_load_cached(si, hi, scratch);
 | 
						|
			if (error)
 | 
						|
				goto out_free;
 | 
						|
			while (xfarray_sort_cmp(si, scratch, pivot) >= 0 &&
 | 
						|
								lo < hi) {
 | 
						|
				hi--;
 | 
						|
				error = xfarray_sort_load_cached(si, hi,
 | 
						|
						scratch);
 | 
						|
				if (error)
 | 
						|
					goto out_free;
 | 
						|
			}
 | 
						|
			error = xfarray_sort_put_page(si);
 | 
						|
			if (error)
 | 
						|
				goto out_free;
 | 
						|
 | 
						|
			if (xfarray_sort_terminated(si, &error))
 | 
						|
				goto out_free;
 | 
						|
 | 
						|
			/* Copy that item (a[hi]) to a[lo]. */
 | 
						|
			if (lo < hi) {
 | 
						|
				error = xfarray_sort_store(si, lo++, scratch);
 | 
						|
				if (error)
 | 
						|
					goto out_free;
 | 
						|
			}
 | 
						|
 | 
						|
			/*
 | 
						|
			 * Increment lo until it finds an a[lo] greater than
 | 
						|
			 * the pivot value.
 | 
						|
			 */
 | 
						|
			error = xfarray_sort_load_cached(si, lo, scratch);
 | 
						|
			if (error)
 | 
						|
				goto out_free;
 | 
						|
			while (xfarray_sort_cmp(si, scratch, pivot) <= 0 &&
 | 
						|
								lo < hi) {
 | 
						|
				lo++;
 | 
						|
				error = xfarray_sort_load_cached(si, lo,
 | 
						|
						scratch);
 | 
						|
				if (error)
 | 
						|
					goto out_free;
 | 
						|
			}
 | 
						|
			error = xfarray_sort_put_page(si);
 | 
						|
			if (error)
 | 
						|
				goto out_free;
 | 
						|
 | 
						|
			if (xfarray_sort_terminated(si, &error))
 | 
						|
				goto out_free;
 | 
						|
 | 
						|
			/* Copy that item (a[lo]) to a[hi]. */
 | 
						|
			if (lo < hi) {
 | 
						|
				error = xfarray_sort_store(si, hi--, scratch);
 | 
						|
				if (error)
 | 
						|
					goto out_free;
 | 
						|
			}
 | 
						|
 | 
						|
			if (xfarray_sort_terminated(si, &error))
 | 
						|
				goto out_free;
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Put our pivot value in the correct place at a[lo].  All
 | 
						|
		 * values between a[beg[i]] and a[lo - 1] should be less than
 | 
						|
		 * the pivot; and all values between a[lo + 1] and a[end[i]-1]
 | 
						|
		 * should be greater than the pivot.
 | 
						|
		 */
 | 
						|
		error = xfarray_sort_store(si, lo, pivot);
 | 
						|
		if (error)
 | 
						|
			goto out_free;
 | 
						|
 | 
						|
		/* Set up the stack frame to process the two partitions. */
 | 
						|
		error = xfarray_qsort_push(si, si_lo, si_hi, lo, hi);
 | 
						|
		if (error)
 | 
						|
			goto out_free;
 | 
						|
 | 
						|
		if (xfarray_sort_terminated(si, &error))
 | 
						|
			goto out_free;
 | 
						|
	}
 | 
						|
 | 
						|
out_free:
 | 
						|
	trace_xfarray_sort_stats(si, error);
 | 
						|
	kvfree(si);
 | 
						|
	return error;
 | 
						|
}
 |