mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-10-30 22:47:06 +10:00 
			
		
		
		
	Implement trivial statistics for the memory resource controller. Signed-off-by: Balaji Rao <balajirrao@gmail.com> Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com> Cc: Dhaval Giani <dhaval@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			1121 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1121 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* memcontrol.c - Memory Controller
 | |
|  *
 | |
|  * Copyright IBM Corporation, 2007
 | |
|  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 | |
|  *
 | |
|  * Copyright 2007 OpenVZ SWsoft Inc
 | |
|  * Author: Pavel Emelianov <xemul@openvz.org>
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License as published by
 | |
|  * the Free Software Foundation; either version 2 of the License, or
 | |
|  * (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  */
 | |
| 
 | |
| #include <linux/res_counter.h>
 | |
| #include <linux/memcontrol.h>
 | |
| #include <linux/cgroup.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/page-flags.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/bit_spinlock.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/seq_file.h>
 | |
| #include <linux/vmalloc.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| 
 | |
| struct cgroup_subsys mem_cgroup_subsys;
 | |
| static const int MEM_CGROUP_RECLAIM_RETRIES = 5;
 | |
| static struct kmem_cache *page_cgroup_cache;
 | |
| 
 | |
| /*
 | |
|  * Statistics for memory cgroup.
 | |
|  */
 | |
| enum mem_cgroup_stat_index {
 | |
| 	/*
 | |
| 	 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
 | |
| 	 */
 | |
| 	MEM_CGROUP_STAT_CACHE, 	   /* # of pages charged as cache */
 | |
| 	MEM_CGROUP_STAT_RSS,	   /* # of pages charged as rss */
 | |
| 	MEM_CGROUP_STAT_PGPGIN_COUNT,	/* # of pages paged in */
 | |
| 	MEM_CGROUP_STAT_PGPGOUT_COUNT,	/* # of pages paged out */
 | |
| 
 | |
| 	MEM_CGROUP_STAT_NSTATS,
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_stat_cpu {
 | |
| 	s64 count[MEM_CGROUP_STAT_NSTATS];
 | |
| } ____cacheline_aligned_in_smp;
 | |
| 
 | |
| struct mem_cgroup_stat {
 | |
| 	struct mem_cgroup_stat_cpu cpustat[NR_CPUS];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * For accounting under irq disable, no need for increment preempt count.
 | |
|  */
 | |
| static void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat *stat,
 | |
| 		enum mem_cgroup_stat_index idx, int val)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	stat->cpustat[cpu].count[idx] += val;
 | |
| }
 | |
| 
 | |
| static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
 | |
| 		enum mem_cgroup_stat_index idx)
 | |
| {
 | |
| 	int cpu;
 | |
| 	s64 ret = 0;
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		ret += stat->cpustat[cpu].count[idx];
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * per-zone information in memory controller.
 | |
|  */
 | |
| 
 | |
| enum mem_cgroup_zstat_index {
 | |
| 	MEM_CGROUP_ZSTAT_ACTIVE,
 | |
| 	MEM_CGROUP_ZSTAT_INACTIVE,
 | |
| 
 | |
| 	NR_MEM_CGROUP_ZSTAT,
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_per_zone {
 | |
| 	/*
 | |
| 	 * spin_lock to protect the per cgroup LRU
 | |
| 	 */
 | |
| 	spinlock_t		lru_lock;
 | |
| 	struct list_head	active_list;
 | |
| 	struct list_head	inactive_list;
 | |
| 	unsigned long count[NR_MEM_CGROUP_ZSTAT];
 | |
| };
 | |
| /* Macro for accessing counter */
 | |
| #define MEM_CGROUP_ZSTAT(mz, idx)	((mz)->count[(idx)])
 | |
| 
 | |
| struct mem_cgroup_per_node {
 | |
| 	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
 | |
| };
 | |
| 
 | |
| struct mem_cgroup_lru_info {
 | |
| 	struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * The memory controller data structure. The memory controller controls both
 | |
|  * page cache and RSS per cgroup. We would eventually like to provide
 | |
|  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 | |
|  * to help the administrator determine what knobs to tune.
 | |
|  *
 | |
|  * TODO: Add a water mark for the memory controller. Reclaim will begin when
 | |
|  * we hit the water mark. May be even add a low water mark, such that
 | |
|  * no reclaim occurs from a cgroup at it's low water mark, this is
 | |
|  * a feature that will be implemented much later in the future.
 | |
|  */
 | |
| struct mem_cgroup {
 | |
| 	struct cgroup_subsys_state css;
 | |
| 	/*
 | |
| 	 * the counter to account for memory usage
 | |
| 	 */
 | |
| 	struct res_counter res;
 | |
| 	/*
 | |
| 	 * Per cgroup active and inactive list, similar to the
 | |
| 	 * per zone LRU lists.
 | |
| 	 */
 | |
| 	struct mem_cgroup_lru_info info;
 | |
| 
 | |
| 	int	prev_priority;	/* for recording reclaim priority */
 | |
| 	/*
 | |
| 	 * statistics.
 | |
| 	 */
 | |
| 	struct mem_cgroup_stat stat;
 | |
| };
 | |
| static struct mem_cgroup init_mem_cgroup;
 | |
| 
 | |
| /*
 | |
|  * We use the lower bit of the page->page_cgroup pointer as a bit spin
 | |
|  * lock.  We need to ensure that page->page_cgroup is at least two
 | |
|  * byte aligned (based on comments from Nick Piggin).  But since
 | |
|  * bit_spin_lock doesn't actually set that lock bit in a non-debug
 | |
|  * uniprocessor kernel, we should avoid setting it here too.
 | |
|  */
 | |
| #define PAGE_CGROUP_LOCK_BIT 	0x0
 | |
| #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK)
 | |
| #define PAGE_CGROUP_LOCK 	(1 << PAGE_CGROUP_LOCK_BIT)
 | |
| #else
 | |
| #define PAGE_CGROUP_LOCK	0x0
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * A page_cgroup page is associated with every page descriptor. The
 | |
|  * page_cgroup helps us identify information about the cgroup
 | |
|  */
 | |
| struct page_cgroup {
 | |
| 	struct list_head lru;		/* per cgroup LRU list */
 | |
| 	struct page *page;
 | |
| 	struct mem_cgroup *mem_cgroup;
 | |
| 	int ref_cnt;			/* cached, mapped, migrating */
 | |
| 	int flags;
 | |
| };
 | |
| #define PAGE_CGROUP_FLAG_CACHE	(0x1)	/* charged as cache */
 | |
| #define PAGE_CGROUP_FLAG_ACTIVE (0x2)	/* page is active in this cgroup */
 | |
| 
 | |
| static int page_cgroup_nid(struct page_cgroup *pc)
 | |
| {
 | |
| 	return page_to_nid(pc->page);
 | |
| }
 | |
| 
 | |
| static enum zone_type page_cgroup_zid(struct page_cgroup *pc)
 | |
| {
 | |
| 	return page_zonenum(pc->page);
 | |
| }
 | |
| 
 | |
| enum charge_type {
 | |
| 	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 | |
| 	MEM_CGROUP_CHARGE_TYPE_MAPPED,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Always modified under lru lock. Then, not necessary to preempt_disable()
 | |
|  */
 | |
| static void mem_cgroup_charge_statistics(struct mem_cgroup *mem, int flags,
 | |
| 					bool charge)
 | |
| {
 | |
| 	int val = (charge)? 1 : -1;
 | |
| 	struct mem_cgroup_stat *stat = &mem->stat;
 | |
| 
 | |
| 	VM_BUG_ON(!irqs_disabled());
 | |
| 	if (flags & PAGE_CGROUP_FLAG_CACHE)
 | |
| 		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_CACHE, val);
 | |
| 	else
 | |
| 		__mem_cgroup_stat_add_safe(stat, MEM_CGROUP_STAT_RSS, val);
 | |
| 
 | |
| 	if (charge)
 | |
| 		__mem_cgroup_stat_add_safe(stat,
 | |
| 				MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
 | |
| 	else
 | |
| 		__mem_cgroup_stat_add_safe(stat,
 | |
| 				MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
 | |
| {
 | |
| 	return &mem->info.nodeinfo[nid]->zoneinfo[zid];
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup_per_zone *
 | |
| page_cgroup_zoneinfo(struct page_cgroup *pc)
 | |
| {
 | |
| 	struct mem_cgroup *mem = pc->mem_cgroup;
 | |
| 	int nid = page_cgroup_nid(pc);
 | |
| 	int zid = page_cgroup_zid(pc);
 | |
| 
 | |
| 	return mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| }
 | |
| 
 | |
| static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
 | |
| 					enum mem_cgroup_zstat_index idx)
 | |
| {
 | |
| 	int nid, zid;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	u64 total = 0;
 | |
| 
 | |
| 	for_each_online_node(nid)
 | |
| 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 			mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| 			total += MEM_CGROUP_ZSTAT(mz, idx);
 | |
| 		}
 | |
| 	return total;
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
 | |
| {
 | |
| 	return container_of(cgroup_subsys_state(cont,
 | |
| 				mem_cgroup_subsys_id), struct mem_cgroup,
 | |
| 				css);
 | |
| }
 | |
| 
 | |
| struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 | |
| {
 | |
| 	return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
 | |
| 				struct mem_cgroup, css);
 | |
| }
 | |
| 
 | |
| static inline int page_cgroup_locked(struct page *page)
 | |
| {
 | |
| 	return bit_spin_is_locked(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
 | |
| }
 | |
| 
 | |
| static void page_assign_page_cgroup(struct page *page, struct page_cgroup *pc)
 | |
| {
 | |
| 	VM_BUG_ON(!page_cgroup_locked(page));
 | |
| 	page->page_cgroup = ((unsigned long)pc | PAGE_CGROUP_LOCK);
 | |
| }
 | |
| 
 | |
| struct page_cgroup *page_get_page_cgroup(struct page *page)
 | |
| {
 | |
| 	return (struct page_cgroup *) (page->page_cgroup & ~PAGE_CGROUP_LOCK);
 | |
| }
 | |
| 
 | |
| static void lock_page_cgroup(struct page *page)
 | |
| {
 | |
| 	bit_spin_lock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
 | |
| }
 | |
| 
 | |
| static int try_lock_page_cgroup(struct page *page)
 | |
| {
 | |
| 	return bit_spin_trylock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
 | |
| }
 | |
| 
 | |
| static void unlock_page_cgroup(struct page *page)
 | |
| {
 | |
| 	bit_spin_unlock(PAGE_CGROUP_LOCK_BIT, &page->page_cgroup);
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_remove_list(struct mem_cgroup_per_zone *mz,
 | |
| 			struct page_cgroup *pc)
 | |
| {
 | |
| 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
 | |
| 
 | |
| 	if (from)
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
 | |
| 	else
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
 | |
| 
 | |
| 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, false);
 | |
| 	list_del_init(&pc->lru);
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_add_list(struct mem_cgroup_per_zone *mz,
 | |
| 				struct page_cgroup *pc)
 | |
| {
 | |
| 	int to = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
 | |
| 
 | |
| 	if (!to) {
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
 | |
| 		list_add(&pc->lru, &mz->inactive_list);
 | |
| 	} else {
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
 | |
| 		list_add(&pc->lru, &mz->active_list);
 | |
| 	}
 | |
| 	mem_cgroup_charge_statistics(pc->mem_cgroup, pc->flags, true);
 | |
| }
 | |
| 
 | |
| static void __mem_cgroup_move_lists(struct page_cgroup *pc, bool active)
 | |
| {
 | |
| 	int from = pc->flags & PAGE_CGROUP_FLAG_ACTIVE;
 | |
| 	struct mem_cgroup_per_zone *mz = page_cgroup_zoneinfo(pc);
 | |
| 
 | |
| 	if (from)
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) -= 1;
 | |
| 	else
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) -= 1;
 | |
| 
 | |
| 	if (active) {
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE) += 1;
 | |
| 		pc->flags |= PAGE_CGROUP_FLAG_ACTIVE;
 | |
| 		list_move(&pc->lru, &mz->active_list);
 | |
| 	} else {
 | |
| 		MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE) += 1;
 | |
| 		pc->flags &= ~PAGE_CGROUP_FLAG_ACTIVE;
 | |
| 		list_move(&pc->lru, &mz->inactive_list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	task_lock(task);
 | |
| 	ret = task->mm && mm_match_cgroup(task->mm, mem);
 | |
| 	task_unlock(task);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine assumes that the appropriate zone's lru lock is already held
 | |
|  */
 | |
| void mem_cgroup_move_lists(struct page *page, bool active)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	/*
 | |
| 	 * We cannot lock_page_cgroup while holding zone's lru_lock,
 | |
| 	 * because other holders of lock_page_cgroup can be interrupted
 | |
| 	 * with an attempt to rotate_reclaimable_page.  But we cannot
 | |
| 	 * safely get to page_cgroup without it, so just try_lock it:
 | |
| 	 * mem_cgroup_isolate_pages allows for page left on wrong list.
 | |
| 	 */
 | |
| 	if (!try_lock_page_cgroup(page))
 | |
| 		return;
 | |
| 
 | |
| 	pc = page_get_page_cgroup(page);
 | |
| 	if (pc) {
 | |
| 		mz = page_cgroup_zoneinfo(pc);
 | |
| 		spin_lock_irqsave(&mz->lru_lock, flags);
 | |
| 		__mem_cgroup_move_lists(pc, active);
 | |
| 		spin_unlock_irqrestore(&mz->lru_lock, flags);
 | |
| 	}
 | |
| 	unlock_page_cgroup(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate mapped_ratio under memory controller. This will be used in
 | |
|  * vmscan.c for deteremining we have to reclaim mapped pages.
 | |
|  */
 | |
| int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
 | |
| {
 | |
| 	long total, rss;
 | |
| 
 | |
| 	/*
 | |
| 	 * usage is recorded in bytes. But, here, we assume the number of
 | |
| 	 * physical pages can be represented by "long" on any arch.
 | |
| 	 */
 | |
| 	total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
 | |
| 	rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
 | |
| 	return (int)((rss * 100L) / total);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function is called from vmscan.c. In page reclaiming loop. balance
 | |
|  * between active and inactive list is calculated. For memory controller
 | |
|  * page reclaiming, we should use using mem_cgroup's imbalance rather than
 | |
|  * zone's global lru imbalance.
 | |
|  */
 | |
| long mem_cgroup_reclaim_imbalance(struct mem_cgroup *mem)
 | |
| {
 | |
| 	unsigned long active, inactive;
 | |
| 	/* active and inactive are the number of pages. 'long' is ok.*/
 | |
| 	active = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_ACTIVE);
 | |
| 	inactive = mem_cgroup_get_all_zonestat(mem, MEM_CGROUP_ZSTAT_INACTIVE);
 | |
| 	return (long) (active / (inactive + 1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * prev_priority control...this will be used in memory reclaim path.
 | |
|  */
 | |
| int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
 | |
| {
 | |
| 	return mem->prev_priority;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
 | |
| {
 | |
| 	if (priority < mem->prev_priority)
 | |
| 		mem->prev_priority = priority;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
 | |
| {
 | |
| 	mem->prev_priority = priority;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate # of pages to be scanned in this priority/zone.
 | |
|  * See also vmscan.c
 | |
|  *
 | |
|  * priority starts from "DEF_PRIORITY" and decremented in each loop.
 | |
|  * (see include/linux/mmzone.h)
 | |
|  */
 | |
| 
 | |
| long mem_cgroup_calc_reclaim_active(struct mem_cgroup *mem,
 | |
| 				   struct zone *zone, int priority)
 | |
| {
 | |
| 	long nr_active;
 | |
| 	int nid = zone->zone_pgdat->node_id;
 | |
| 	int zid = zone_idx(zone);
 | |
| 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| 
 | |
| 	nr_active = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_ACTIVE);
 | |
| 	return (nr_active >> priority);
 | |
| }
 | |
| 
 | |
| long mem_cgroup_calc_reclaim_inactive(struct mem_cgroup *mem,
 | |
| 					struct zone *zone, int priority)
 | |
| {
 | |
| 	long nr_inactive;
 | |
| 	int nid = zone->zone_pgdat->node_id;
 | |
| 	int zid = zone_idx(zone);
 | |
| 	struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
 | |
| 
 | |
| 	nr_inactive = MEM_CGROUP_ZSTAT(mz, MEM_CGROUP_ZSTAT_INACTIVE);
 | |
| 	return (nr_inactive >> priority);
 | |
| }
 | |
| 
 | |
| unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
 | |
| 					struct list_head *dst,
 | |
| 					unsigned long *scanned, int order,
 | |
| 					int mode, struct zone *z,
 | |
| 					struct mem_cgroup *mem_cont,
 | |
| 					int active)
 | |
| {
 | |
| 	unsigned long nr_taken = 0;
 | |
| 	struct page *page;
 | |
| 	unsigned long scan;
 | |
| 	LIST_HEAD(pc_list);
 | |
| 	struct list_head *src;
 | |
| 	struct page_cgroup *pc, *tmp;
 | |
| 	int nid = z->zone_pgdat->node_id;
 | |
| 	int zid = zone_idx(z);
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	BUG_ON(!mem_cont);
 | |
| 	mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
 | |
| 	if (active)
 | |
| 		src = &mz->active_list;
 | |
| 	else
 | |
| 		src = &mz->inactive_list;
 | |
| 
 | |
| 
 | |
| 	spin_lock(&mz->lru_lock);
 | |
| 	scan = 0;
 | |
| 	list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
 | |
| 		if (scan >= nr_to_scan)
 | |
| 			break;
 | |
| 		page = pc->page;
 | |
| 
 | |
| 		if (unlikely(!PageLRU(page)))
 | |
| 			continue;
 | |
| 
 | |
| 		if (PageActive(page) && !active) {
 | |
| 			__mem_cgroup_move_lists(pc, true);
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (!PageActive(page) && active) {
 | |
| 			__mem_cgroup_move_lists(pc, false);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		scan++;
 | |
| 		list_move(&pc->lru, &pc_list);
 | |
| 
 | |
| 		if (__isolate_lru_page(page, mode) == 0) {
 | |
| 			list_move(&page->lru, dst);
 | |
| 			nr_taken++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	list_splice(&pc_list, src);
 | |
| 	spin_unlock(&mz->lru_lock);
 | |
| 
 | |
| 	*scanned = scan;
 | |
| 	return nr_taken;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Charge the memory controller for page usage.
 | |
|  * Return
 | |
|  * 0 if the charge was successful
 | |
|  * < 0 if the cgroup is over its limit
 | |
|  */
 | |
| static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
 | |
| 				gfp_t gfp_mask, enum charge_type ctype)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	struct page_cgroup *pc;
 | |
| 	unsigned long flags;
 | |
| 	unsigned long nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 
 | |
| 	if (mem_cgroup_subsys.disabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Should page_cgroup's go to their own slab?
 | |
| 	 * One could optimize the performance of the charging routine
 | |
| 	 * by saving a bit in the page_flags and using it as a lock
 | |
| 	 * to see if the cgroup page already has a page_cgroup associated
 | |
| 	 * with it
 | |
| 	 */
 | |
| retry:
 | |
| 	lock_page_cgroup(page);
 | |
| 	pc = page_get_page_cgroup(page);
 | |
| 	/*
 | |
| 	 * The page_cgroup exists and
 | |
| 	 * the page has already been accounted.
 | |
| 	 */
 | |
| 	if (pc) {
 | |
| 		VM_BUG_ON(pc->page != page);
 | |
| 		VM_BUG_ON(pc->ref_cnt <= 0);
 | |
| 
 | |
| 		pc->ref_cnt++;
 | |
| 		unlock_page_cgroup(page);
 | |
| 		goto done;
 | |
| 	}
 | |
| 	unlock_page_cgroup(page);
 | |
| 
 | |
| 	pc = kmem_cache_zalloc(page_cgroup_cache, gfp_mask);
 | |
| 	if (pc == NULL)
 | |
| 		goto err;
 | |
| 
 | |
| 	/*
 | |
| 	 * We always charge the cgroup the mm_struct belongs to.
 | |
| 	 * The mm_struct's mem_cgroup changes on task migration if the
 | |
| 	 * thread group leader migrates. It's possible that mm is not
 | |
| 	 * set, if so charge the init_mm (happens for pagecache usage).
 | |
| 	 */
 | |
| 	if (!mm)
 | |
| 		mm = &init_mm;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
 | |
| 	/*
 | |
| 	 * For every charge from the cgroup, increment reference count
 | |
| 	 */
 | |
| 	css_get(&mem->css);
 | |
| 	rcu_read_unlock();
 | |
| 
 | |
| 	while (res_counter_charge(&mem->res, PAGE_SIZE)) {
 | |
| 		if (!(gfp_mask & __GFP_WAIT))
 | |
| 			goto out;
 | |
| 
 | |
| 		if (try_to_free_mem_cgroup_pages(mem, gfp_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * try_to_free_mem_cgroup_pages() might not give us a full
 | |
| 		 * picture of reclaim. Some pages are reclaimed and might be
 | |
| 		 * moved to swap cache or just unmapped from the cgroup.
 | |
| 		 * Check the limit again to see if the reclaim reduced the
 | |
| 		 * current usage of the cgroup before giving up
 | |
| 		 */
 | |
| 		if (res_counter_check_under_limit(&mem->res))
 | |
| 			continue;
 | |
| 
 | |
| 		if (!nr_retries--) {
 | |
| 			mem_cgroup_out_of_memory(mem, gfp_mask);
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pc->ref_cnt = 1;
 | |
| 	pc->mem_cgroup = mem;
 | |
| 	pc->page = page;
 | |
| 	pc->flags = PAGE_CGROUP_FLAG_ACTIVE;
 | |
| 	if (ctype == MEM_CGROUP_CHARGE_TYPE_CACHE)
 | |
| 		pc->flags = PAGE_CGROUP_FLAG_CACHE;
 | |
| 
 | |
| 	lock_page_cgroup(page);
 | |
| 	if (page_get_page_cgroup(page)) {
 | |
| 		unlock_page_cgroup(page);
 | |
| 		/*
 | |
| 		 * Another charge has been added to this page already.
 | |
| 		 * We take lock_page_cgroup(page) again and read
 | |
| 		 * page->cgroup, increment refcnt.... just retry is OK.
 | |
| 		 */
 | |
| 		res_counter_uncharge(&mem->res, PAGE_SIZE);
 | |
| 		css_put(&mem->css);
 | |
| 		kmem_cache_free(page_cgroup_cache, pc);
 | |
| 		goto retry;
 | |
| 	}
 | |
| 	page_assign_page_cgroup(page, pc);
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	spin_lock_irqsave(&mz->lru_lock, flags);
 | |
| 	__mem_cgroup_add_list(mz, pc);
 | |
| 	spin_unlock_irqrestore(&mz->lru_lock, flags);
 | |
| 
 | |
| 	unlock_page_cgroup(page);
 | |
| done:
 | |
| 	return 0;
 | |
| out:
 | |
| 	css_put(&mem->css);
 | |
| 	kmem_cache_free(page_cgroup_cache, pc);
 | |
| err:
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
 | |
| {
 | |
| 	return mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 				MEM_CGROUP_CHARGE_TYPE_MAPPED);
 | |
| }
 | |
| 
 | |
| int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
 | |
| 				gfp_t gfp_mask)
 | |
| {
 | |
| 	if (!mm)
 | |
| 		mm = &init_mm;
 | |
| 	return mem_cgroup_charge_common(page, mm, gfp_mask,
 | |
| 				MEM_CGROUP_CHARGE_TYPE_CACHE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Uncharging is always a welcome operation, we never complain, simply
 | |
|  * uncharge.
 | |
|  */
 | |
| void mem_cgroup_uncharge_page(struct page *page)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup *mem;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (mem_cgroup_subsys.disabled)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check if our page_cgroup is valid
 | |
| 	 */
 | |
| 	lock_page_cgroup(page);
 | |
| 	pc = page_get_page_cgroup(page);
 | |
| 	if (!pc)
 | |
| 		goto unlock;
 | |
| 
 | |
| 	VM_BUG_ON(pc->page != page);
 | |
| 	VM_BUG_ON(pc->ref_cnt <= 0);
 | |
| 
 | |
| 	if (--(pc->ref_cnt) == 0) {
 | |
| 		mz = page_cgroup_zoneinfo(pc);
 | |
| 		spin_lock_irqsave(&mz->lru_lock, flags);
 | |
| 		__mem_cgroup_remove_list(mz, pc);
 | |
| 		spin_unlock_irqrestore(&mz->lru_lock, flags);
 | |
| 
 | |
| 		page_assign_page_cgroup(page, NULL);
 | |
| 		unlock_page_cgroup(page);
 | |
| 
 | |
| 		mem = pc->mem_cgroup;
 | |
| 		res_counter_uncharge(&mem->res, PAGE_SIZE);
 | |
| 		css_put(&mem->css);
 | |
| 
 | |
| 		kmem_cache_free(page_cgroup_cache, pc);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| unlock:
 | |
| 	unlock_page_cgroup(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns non-zero if a page (under migration) has valid page_cgroup member.
 | |
|  * Refcnt of page_cgroup is incremented.
 | |
|  */
 | |
| int mem_cgroup_prepare_migration(struct page *page)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 
 | |
| 	if (mem_cgroup_subsys.disabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	lock_page_cgroup(page);
 | |
| 	pc = page_get_page_cgroup(page);
 | |
| 	if (pc)
 | |
| 		pc->ref_cnt++;
 | |
| 	unlock_page_cgroup(page);
 | |
| 	return pc != NULL;
 | |
| }
 | |
| 
 | |
| void mem_cgroup_end_migration(struct page *page)
 | |
| {
 | |
| 	mem_cgroup_uncharge_page(page);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We know both *page* and *newpage* are now not-on-LRU and PG_locked.
 | |
|  * And no race with uncharge() routines because page_cgroup for *page*
 | |
|  * has extra one reference by mem_cgroup_prepare_migration.
 | |
|  */
 | |
| void mem_cgroup_page_migration(struct page *page, struct page *newpage)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	lock_page_cgroup(page);
 | |
| 	pc = page_get_page_cgroup(page);
 | |
| 	if (!pc) {
 | |
| 		unlock_page_cgroup(page);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	spin_lock_irqsave(&mz->lru_lock, flags);
 | |
| 	__mem_cgroup_remove_list(mz, pc);
 | |
| 	spin_unlock_irqrestore(&mz->lru_lock, flags);
 | |
| 
 | |
| 	page_assign_page_cgroup(page, NULL);
 | |
| 	unlock_page_cgroup(page);
 | |
| 
 | |
| 	pc->page = newpage;
 | |
| 	lock_page_cgroup(newpage);
 | |
| 	page_assign_page_cgroup(newpage, pc);
 | |
| 
 | |
| 	mz = page_cgroup_zoneinfo(pc);
 | |
| 	spin_lock_irqsave(&mz->lru_lock, flags);
 | |
| 	__mem_cgroup_add_list(mz, pc);
 | |
| 	spin_unlock_irqrestore(&mz->lru_lock, flags);
 | |
| 
 | |
| 	unlock_page_cgroup(newpage);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine traverse page_cgroup in given list and drop them all.
 | |
|  * This routine ignores page_cgroup->ref_cnt.
 | |
|  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
 | |
|  */
 | |
| #define FORCE_UNCHARGE_BATCH	(128)
 | |
| static void mem_cgroup_force_empty_list(struct mem_cgroup *mem,
 | |
| 			    struct mem_cgroup_per_zone *mz,
 | |
| 			    int active)
 | |
| {
 | |
| 	struct page_cgroup *pc;
 | |
| 	struct page *page;
 | |
| 	int count = FORCE_UNCHARGE_BATCH;
 | |
| 	unsigned long flags;
 | |
| 	struct list_head *list;
 | |
| 
 | |
| 	if (active)
 | |
| 		list = &mz->active_list;
 | |
| 	else
 | |
| 		list = &mz->inactive_list;
 | |
| 
 | |
| 	spin_lock_irqsave(&mz->lru_lock, flags);
 | |
| 	while (!list_empty(list)) {
 | |
| 		pc = list_entry(list->prev, struct page_cgroup, lru);
 | |
| 		page = pc->page;
 | |
| 		get_page(page);
 | |
| 		spin_unlock_irqrestore(&mz->lru_lock, flags);
 | |
| 		mem_cgroup_uncharge_page(page);
 | |
| 		put_page(page);
 | |
| 		if (--count <= 0) {
 | |
| 			count = FORCE_UNCHARGE_BATCH;
 | |
| 			cond_resched();
 | |
| 		}
 | |
| 		spin_lock_irqsave(&mz->lru_lock, flags);
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&mz->lru_lock, flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * make mem_cgroup's charge to be 0 if there is no task.
 | |
|  * This enables deleting this mem_cgroup.
 | |
|  */
 | |
| static int mem_cgroup_force_empty(struct mem_cgroup *mem)
 | |
| {
 | |
| 	int ret = -EBUSY;
 | |
| 	int node, zid;
 | |
| 
 | |
| 	if (mem_cgroup_subsys.disabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	css_get(&mem->css);
 | |
| 	/*
 | |
| 	 * page reclaim code (kswapd etc..) will move pages between
 | |
| 	 * active_list <-> inactive_list while we don't take a lock.
 | |
| 	 * So, we have to do loop here until all lists are empty.
 | |
| 	 */
 | |
| 	while (mem->res.usage > 0) {
 | |
| 		if (atomic_read(&mem->css.cgroup->count) > 0)
 | |
| 			goto out;
 | |
| 		for_each_node_state(node, N_POSSIBLE)
 | |
| 			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
 | |
| 				struct mem_cgroup_per_zone *mz;
 | |
| 				mz = mem_cgroup_zoneinfo(mem, node, zid);
 | |
| 				/* drop all page_cgroup in active_list */
 | |
| 				mem_cgroup_force_empty_list(mem, mz, 1);
 | |
| 				/* drop all page_cgroup in inactive_list */
 | |
| 				mem_cgroup_force_empty_list(mem, mz, 0);
 | |
| 			}
 | |
| 	}
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	css_put(&mem->css);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_write_strategy(char *buf, unsigned long long *tmp)
 | |
| {
 | |
| 	*tmp = memparse(buf, &buf);
 | |
| 	if (*buf != '\0')
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Round up the value to the closest page size
 | |
| 	 */
 | |
| 	*tmp = ((*tmp + PAGE_SIZE - 1) >> PAGE_SHIFT) << PAGE_SHIFT;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
 | |
| {
 | |
| 	return res_counter_read_u64(&mem_cgroup_from_cont(cont)->res,
 | |
| 				    cft->private);
 | |
| }
 | |
| 
 | |
| static ssize_t mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
 | |
| 				struct file *file, const char __user *userbuf,
 | |
| 				size_t nbytes, loff_t *ppos)
 | |
| {
 | |
| 	return res_counter_write(&mem_cgroup_from_cont(cont)->res,
 | |
| 				cft->private, userbuf, nbytes, ppos,
 | |
| 				mem_cgroup_write_strategy);
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 
 | |
| 	mem = mem_cgroup_from_cont(cont);
 | |
| 	switch (event) {
 | |
| 	case RES_MAX_USAGE:
 | |
| 		res_counter_reset_max(&mem->res);
 | |
| 		break;
 | |
| 	case RES_FAILCNT:
 | |
| 		res_counter_reset_failcnt(&mem->res);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mem_force_empty_write(struct cgroup *cont, unsigned int event)
 | |
| {
 | |
| 	return mem_cgroup_force_empty(mem_cgroup_from_cont(cont));
 | |
| }
 | |
| 
 | |
| static const struct mem_cgroup_stat_desc {
 | |
| 	const char *msg;
 | |
| 	u64 unit;
 | |
| } mem_cgroup_stat_desc[] = {
 | |
| 	[MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
 | |
| 	[MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
 | |
| 	[MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
 | |
| 	[MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
 | |
| };
 | |
| 
 | |
| static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
 | |
| 				 struct cgroup_map_cb *cb)
 | |
| {
 | |
| 	struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
 | |
| 	struct mem_cgroup_stat *stat = &mem_cont->stat;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
 | |
| 		s64 val;
 | |
| 
 | |
| 		val = mem_cgroup_read_stat(stat, i);
 | |
| 		val *= mem_cgroup_stat_desc[i].unit;
 | |
| 		cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
 | |
| 	}
 | |
| 	/* showing # of active pages */
 | |
| 	{
 | |
| 		unsigned long active, inactive;
 | |
| 
 | |
| 		inactive = mem_cgroup_get_all_zonestat(mem_cont,
 | |
| 						MEM_CGROUP_ZSTAT_INACTIVE);
 | |
| 		active = mem_cgroup_get_all_zonestat(mem_cont,
 | |
| 						MEM_CGROUP_ZSTAT_ACTIVE);
 | |
| 		cb->fill(cb, "active", (active) * PAGE_SIZE);
 | |
| 		cb->fill(cb, "inactive", (inactive) * PAGE_SIZE);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct cftype mem_cgroup_files[] = {
 | |
| 	{
 | |
| 		.name = "usage_in_bytes",
 | |
| 		.private = RES_USAGE,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "max_usage_in_bytes",
 | |
| 		.private = RES_MAX_USAGE,
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "limit_in_bytes",
 | |
| 		.private = RES_LIMIT,
 | |
| 		.write = mem_cgroup_write,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "failcnt",
 | |
| 		.private = RES_FAILCNT,
 | |
| 		.trigger = mem_cgroup_reset,
 | |
| 		.read_u64 = mem_cgroup_read,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "force_empty",
 | |
| 		.trigger = mem_force_empty_write,
 | |
| 	},
 | |
| 	{
 | |
| 		.name = "stat",
 | |
| 		.read_map = mem_control_stat_show,
 | |
| 	},
 | |
| };
 | |
| 
 | |
| static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | |
| {
 | |
| 	struct mem_cgroup_per_node *pn;
 | |
| 	struct mem_cgroup_per_zone *mz;
 | |
| 	int zone, tmp = node;
 | |
| 	/*
 | |
| 	 * This routine is called against possible nodes.
 | |
| 	 * But it's BUG to call kmalloc() against offline node.
 | |
| 	 *
 | |
| 	 * TODO: this routine can waste much memory for nodes which will
 | |
| 	 *       never be onlined. It's better to use memory hotplug callback
 | |
| 	 *       function.
 | |
| 	 */
 | |
| 	if (!node_state(node, N_NORMAL_MEMORY))
 | |
| 		tmp = -1;
 | |
| 	pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
 | |
| 	if (!pn)
 | |
| 		return 1;
 | |
| 
 | |
| 	mem->info.nodeinfo[node] = pn;
 | |
| 	memset(pn, 0, sizeof(*pn));
 | |
| 
 | |
| 	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
 | |
| 		mz = &pn->zoneinfo[zone];
 | |
| 		INIT_LIST_HEAD(&mz->active_list);
 | |
| 		INIT_LIST_HEAD(&mz->inactive_list);
 | |
| 		spin_lock_init(&mz->lru_lock);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
 | |
| {
 | |
| 	kfree(mem->info.nodeinfo[node]);
 | |
| }
 | |
| 
 | |
| static struct mem_cgroup *mem_cgroup_alloc(void)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 
 | |
| 	if (sizeof(*mem) < PAGE_SIZE)
 | |
| 		mem = kmalloc(sizeof(*mem), GFP_KERNEL);
 | |
| 	else
 | |
| 		mem = vmalloc(sizeof(*mem));
 | |
| 
 | |
| 	if (mem)
 | |
| 		memset(mem, 0, sizeof(*mem));
 | |
| 	return mem;
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_free(struct mem_cgroup *mem)
 | |
| {
 | |
| 	if (sizeof(*mem) < PAGE_SIZE)
 | |
| 		kfree(mem);
 | |
| 	else
 | |
| 		vfree(mem);
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct cgroup_subsys_state *
 | |
| mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem;
 | |
| 	int node;
 | |
| 
 | |
| 	if (unlikely((cont->parent) == NULL)) {
 | |
| 		mem = &init_mem_cgroup;
 | |
| 		page_cgroup_cache = KMEM_CACHE(page_cgroup, SLAB_PANIC);
 | |
| 	} else {
 | |
| 		mem = mem_cgroup_alloc();
 | |
| 		if (!mem)
 | |
| 			return ERR_PTR(-ENOMEM);
 | |
| 	}
 | |
| 
 | |
| 	res_counter_init(&mem->res);
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE)
 | |
| 		if (alloc_mem_cgroup_per_zone_info(mem, node))
 | |
| 			goto free_out;
 | |
| 
 | |
| 	return &mem->css;
 | |
| free_out:
 | |
| 	for_each_node_state(node, N_POSSIBLE)
 | |
| 		free_mem_cgroup_per_zone_info(mem, node);
 | |
| 	if (cont->parent != NULL)
 | |
| 		mem_cgroup_free(mem);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
 | |
| 					struct cgroup *cont)
 | |
| {
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 	mem_cgroup_force_empty(mem);
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_destroy(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont)
 | |
| {
 | |
| 	int node;
 | |
| 	struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
 | |
| 
 | |
| 	for_each_node_state(node, N_POSSIBLE)
 | |
| 		free_mem_cgroup_per_zone_info(mem, node);
 | |
| 
 | |
| 	mem_cgroup_free(mem_cgroup_from_cont(cont));
 | |
| }
 | |
| 
 | |
| static int mem_cgroup_populate(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont)
 | |
| {
 | |
| 	if (mem_cgroup_subsys.disabled)
 | |
| 		return 0;
 | |
| 	return cgroup_add_files(cont, ss, mem_cgroup_files,
 | |
| 					ARRAY_SIZE(mem_cgroup_files));
 | |
| }
 | |
| 
 | |
| static void mem_cgroup_move_task(struct cgroup_subsys *ss,
 | |
| 				struct cgroup *cont,
 | |
| 				struct cgroup *old_cont,
 | |
| 				struct task_struct *p)
 | |
| {
 | |
| 	struct mm_struct *mm;
 | |
| 	struct mem_cgroup *mem, *old_mem;
 | |
| 
 | |
| 	if (mem_cgroup_subsys.disabled)
 | |
| 		return;
 | |
| 
 | |
| 	mm = get_task_mm(p);
 | |
| 	if (mm == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	mem = mem_cgroup_from_cont(cont);
 | |
| 	old_mem = mem_cgroup_from_cont(old_cont);
 | |
| 
 | |
| 	if (mem == old_mem)
 | |
| 		goto out;
 | |
| 
 | |
| 	/*
 | |
| 	 * Only thread group leaders are allowed to migrate, the mm_struct is
 | |
| 	 * in effect owned by the leader
 | |
| 	 */
 | |
| 	if (!thread_group_leader(p))
 | |
| 		goto out;
 | |
| 
 | |
| out:
 | |
| 	mmput(mm);
 | |
| }
 | |
| 
 | |
| struct cgroup_subsys mem_cgroup_subsys = {
 | |
| 	.name = "memory",
 | |
| 	.subsys_id = mem_cgroup_subsys_id,
 | |
| 	.create = mem_cgroup_create,
 | |
| 	.pre_destroy = mem_cgroup_pre_destroy,
 | |
| 	.destroy = mem_cgroup_destroy,
 | |
| 	.populate = mem_cgroup_populate,
 | |
| 	.attach = mem_cgroup_move_task,
 | |
| 	.early_init = 0,
 | |
| };
 |