mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	bitmap_{from,to}_arr64() optimization is overly optimistic on 32-bit LE
architectures when it's wired to bitmap_copy_clear_tail().
bitmap_copy_clear_tail() takes care of unused bits in the bitmap up to
the next word boundary. But on 32-bit machines when copying bits from
bitmap to array of 64-bit words, it's expected that the unused part of
a recipient array must be cleared up to 64-bit boundary, so the last 4
bytes may stay untouched when nbits % 64 <= 32.
While the copying part of the optimization works correct, that clear-tail
trick makes corresponding tests reasonably fail:
test_bitmap: bitmap_to_arr64(nbits == 1): tail is not safely cleared: 0xa5a5a5a500000001 (must be 0x0000000000000001)
Fix it by removing bitmap_{from,to}_arr64() optimization for 32-bit LE
arches.
Reported-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/lkml/20230225184702.GA3587246@roeck-us.net/
Fixes: 0a97953fd2 ("lib: add bitmap_{from,to}_arr64")
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Alexander Lobakin <aleksander.lobakin@intel.com>
		
	
			
		
			
				
	
	
		
			1552 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1552 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * lib/bitmap.c
 | 
						|
 * Helper functions for bitmap.h.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/bitmap.h>
 | 
						|
#include <linux/bitops.h>
 | 
						|
#include <linux/bug.h>
 | 
						|
#include <linux/ctype.h>
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/string.h>
 | 
						|
#include <linux/thread_info.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
 | 
						|
#include <asm/page.h>
 | 
						|
 | 
						|
#include "kstrtox.h"
 | 
						|
 | 
						|
/**
 | 
						|
 * DOC: bitmap introduction
 | 
						|
 *
 | 
						|
 * bitmaps provide an array of bits, implemented using an
 | 
						|
 * array of unsigned longs.  The number of valid bits in a
 | 
						|
 * given bitmap does _not_ need to be an exact multiple of
 | 
						|
 * BITS_PER_LONG.
 | 
						|
 *
 | 
						|
 * The possible unused bits in the last, partially used word
 | 
						|
 * of a bitmap are 'don't care'.  The implementation makes
 | 
						|
 * no particular effort to keep them zero.  It ensures that
 | 
						|
 * their value will not affect the results of any operation.
 | 
						|
 * The bitmap operations that return Boolean (bitmap_empty,
 | 
						|
 * for example) or scalar (bitmap_weight, for example) results
 | 
						|
 * carefully filter out these unused bits from impacting their
 | 
						|
 * results.
 | 
						|
 *
 | 
						|
 * The byte ordering of bitmaps is more natural on little
 | 
						|
 * endian architectures.  See the big-endian headers
 | 
						|
 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
 | 
						|
 * for the best explanations of this ordering.
 | 
						|
 */
 | 
						|
 | 
						|
bool __bitmap_equal(const unsigned long *bitmap1,
 | 
						|
		    const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k, lim = bits/BITS_PER_LONG;
 | 
						|
	for (k = 0; k < lim; ++k)
 | 
						|
		if (bitmap1[k] != bitmap2[k])
 | 
						|
			return false;
 | 
						|
 | 
						|
	if (bits % BITS_PER_LONG)
 | 
						|
		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | 
						|
			return false;
 | 
						|
 | 
						|
	return true;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_equal);
 | 
						|
 | 
						|
bool __bitmap_or_equal(const unsigned long *bitmap1,
 | 
						|
		       const unsigned long *bitmap2,
 | 
						|
		       const unsigned long *bitmap3,
 | 
						|
		       unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k, lim = bits / BITS_PER_LONG;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	for (k = 0; k < lim; ++k) {
 | 
						|
		if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
 | 
						|
			return false;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!(bits % BITS_PER_LONG))
 | 
						|
		return true;
 | 
						|
 | 
						|
	tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
 | 
						|
	return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
 | 
						|
}
 | 
						|
 | 
						|
void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k, lim = BITS_TO_LONGS(bits);
 | 
						|
	for (k = 0; k < lim; ++k)
 | 
						|
		dst[k] = ~src[k];
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_complement);
 | 
						|
 | 
						|
/**
 | 
						|
 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 | 
						|
 *   @dst : destination bitmap
 | 
						|
 *   @src : source bitmap
 | 
						|
 *   @shift : shift by this many bits
 | 
						|
 *   @nbits : bitmap size, in bits
 | 
						|
 *
 | 
						|
 * Shifting right (dividing) means moving bits in the MS -> LS bit
 | 
						|
 * direction.  Zeros are fed into the vacated MS positions and the
 | 
						|
 * LS bits shifted off the bottom are lost.
 | 
						|
 */
 | 
						|
void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
 | 
						|
			unsigned shift, unsigned nbits)
 | 
						|
{
 | 
						|
	unsigned k, lim = BITS_TO_LONGS(nbits);
 | 
						|
	unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 | 
						|
	unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
 | 
						|
	for (k = 0; off + k < lim; ++k) {
 | 
						|
		unsigned long upper, lower;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If shift is not word aligned, take lower rem bits of
 | 
						|
		 * word above and make them the top rem bits of result.
 | 
						|
		 */
 | 
						|
		if (!rem || off + k + 1 >= lim)
 | 
						|
			upper = 0;
 | 
						|
		else {
 | 
						|
			upper = src[off + k + 1];
 | 
						|
			if (off + k + 1 == lim - 1)
 | 
						|
				upper &= mask;
 | 
						|
			upper <<= (BITS_PER_LONG - rem);
 | 
						|
		}
 | 
						|
		lower = src[off + k];
 | 
						|
		if (off + k == lim - 1)
 | 
						|
			lower &= mask;
 | 
						|
		lower >>= rem;
 | 
						|
		dst[k] = lower | upper;
 | 
						|
	}
 | 
						|
	if (off)
 | 
						|
		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_shift_right);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 | 
						|
 *   @dst : destination bitmap
 | 
						|
 *   @src : source bitmap
 | 
						|
 *   @shift : shift by this many bits
 | 
						|
 *   @nbits : bitmap size, in bits
 | 
						|
 *
 | 
						|
 * Shifting left (multiplying) means moving bits in the LS -> MS
 | 
						|
 * direction.  Zeros are fed into the vacated LS bit positions
 | 
						|
 * and those MS bits shifted off the top are lost.
 | 
						|
 */
 | 
						|
 | 
						|
void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 | 
						|
			unsigned int shift, unsigned int nbits)
 | 
						|
{
 | 
						|
	int k;
 | 
						|
	unsigned int lim = BITS_TO_LONGS(nbits);
 | 
						|
	unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 | 
						|
	for (k = lim - off - 1; k >= 0; --k) {
 | 
						|
		unsigned long upper, lower;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * If shift is not word aligned, take upper rem bits of
 | 
						|
		 * word below and make them the bottom rem bits of result.
 | 
						|
		 */
 | 
						|
		if (rem && k > 0)
 | 
						|
			lower = src[k - 1] >> (BITS_PER_LONG - rem);
 | 
						|
		else
 | 
						|
			lower = 0;
 | 
						|
		upper = src[k] << rem;
 | 
						|
		dst[k + off] = lower | upper;
 | 
						|
	}
 | 
						|
	if (off)
 | 
						|
		memset(dst, 0, off*sizeof(unsigned long));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_shift_left);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
 | 
						|
 * @dst: destination bitmap, might overlap with src
 | 
						|
 * @src: source bitmap
 | 
						|
 * @first: start bit of region to be removed
 | 
						|
 * @cut: number of bits to remove
 | 
						|
 * @nbits: bitmap size, in bits
 | 
						|
 *
 | 
						|
 * Set the n-th bit of @dst iff the n-th bit of @src is set and
 | 
						|
 * n is less than @first, or the m-th bit of @src is set for any
 | 
						|
 * m such that @first <= n < nbits, and m = n + @cut.
 | 
						|
 *
 | 
						|
 * In pictures, example for a big-endian 32-bit architecture:
 | 
						|
 *
 | 
						|
 * The @src bitmap is::
 | 
						|
 *
 | 
						|
 *   31                                   63
 | 
						|
 *   |                                    |
 | 
						|
 *   10000000 11000001 11110010 00010101  10000000 11000001 01110010 00010101
 | 
						|
 *                   |  |              |                                    |
 | 
						|
 *                  16  14             0                                   32
 | 
						|
 *
 | 
						|
 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is::
 | 
						|
 *
 | 
						|
 *   31                                   63
 | 
						|
 *   |                                    |
 | 
						|
 *   10110000 00011000 00110010 00010101  00010000 00011000 00101110 01000010
 | 
						|
 *                      |              |                                    |
 | 
						|
 *                      14 (bit 17     0                                   32
 | 
						|
 *                          from @src)
 | 
						|
 *
 | 
						|
 * Note that @dst and @src might overlap partially or entirely.
 | 
						|
 *
 | 
						|
 * This is implemented in the obvious way, with a shift and carry
 | 
						|
 * step for each moved bit. Optimisation is left as an exercise
 | 
						|
 * for the compiler.
 | 
						|
 */
 | 
						|
void bitmap_cut(unsigned long *dst, const unsigned long *src,
 | 
						|
		unsigned int first, unsigned int cut, unsigned int nbits)
 | 
						|
{
 | 
						|
	unsigned int len = BITS_TO_LONGS(nbits);
 | 
						|
	unsigned long keep = 0, carry;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (first % BITS_PER_LONG) {
 | 
						|
		keep = src[first / BITS_PER_LONG] &
 | 
						|
		       (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
 | 
						|
	}
 | 
						|
 | 
						|
	memmove(dst, src, len * sizeof(*dst));
 | 
						|
 | 
						|
	while (cut--) {
 | 
						|
		for (i = first / BITS_PER_LONG; i < len; i++) {
 | 
						|
			if (i < len - 1)
 | 
						|
				carry = dst[i + 1] & 1UL;
 | 
						|
			else
 | 
						|
				carry = 0;
 | 
						|
 | 
						|
			dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
 | 
						|
	dst[first / BITS_PER_LONG] |= keep;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_cut);
 | 
						|
 | 
						|
bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 | 
						|
				const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k;
 | 
						|
	unsigned int lim = bits/BITS_PER_LONG;
 | 
						|
	unsigned long result = 0;
 | 
						|
 | 
						|
	for (k = 0; k < lim; k++)
 | 
						|
		result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 | 
						|
	if (bits % BITS_PER_LONG)
 | 
						|
		result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 | 
						|
			   BITMAP_LAST_WORD_MASK(bits));
 | 
						|
	return result != 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_and);
 | 
						|
 | 
						|
void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 | 
						|
				const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k;
 | 
						|
	unsigned int nr = BITS_TO_LONGS(bits);
 | 
						|
 | 
						|
	for (k = 0; k < nr; k++)
 | 
						|
		dst[k] = bitmap1[k] | bitmap2[k];
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_or);
 | 
						|
 | 
						|
void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 | 
						|
				const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k;
 | 
						|
	unsigned int nr = BITS_TO_LONGS(bits);
 | 
						|
 | 
						|
	for (k = 0; k < nr; k++)
 | 
						|
		dst[k] = bitmap1[k] ^ bitmap2[k];
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_xor);
 | 
						|
 | 
						|
bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 | 
						|
				const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k;
 | 
						|
	unsigned int lim = bits/BITS_PER_LONG;
 | 
						|
	unsigned long result = 0;
 | 
						|
 | 
						|
	for (k = 0; k < lim; k++)
 | 
						|
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 | 
						|
	if (bits % BITS_PER_LONG)
 | 
						|
		result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 | 
						|
			   BITMAP_LAST_WORD_MASK(bits));
 | 
						|
	return result != 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_andnot);
 | 
						|
 | 
						|
void __bitmap_replace(unsigned long *dst,
 | 
						|
		      const unsigned long *old, const unsigned long *new,
 | 
						|
		      const unsigned long *mask, unsigned int nbits)
 | 
						|
{
 | 
						|
	unsigned int k;
 | 
						|
	unsigned int nr = BITS_TO_LONGS(nbits);
 | 
						|
 | 
						|
	for (k = 0; k < nr; k++)
 | 
						|
		dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_replace);
 | 
						|
 | 
						|
bool __bitmap_intersects(const unsigned long *bitmap1,
 | 
						|
			 const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k, lim = bits/BITS_PER_LONG;
 | 
						|
	for (k = 0; k < lim; ++k)
 | 
						|
		if (bitmap1[k] & bitmap2[k])
 | 
						|
			return true;
 | 
						|
 | 
						|
	if (bits % BITS_PER_LONG)
 | 
						|
		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | 
						|
			return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_intersects);
 | 
						|
 | 
						|
bool __bitmap_subset(const unsigned long *bitmap1,
 | 
						|
		     const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int k, lim = bits/BITS_PER_LONG;
 | 
						|
	for (k = 0; k < lim; ++k)
 | 
						|
		if (bitmap1[k] & ~bitmap2[k])
 | 
						|
			return false;
 | 
						|
 | 
						|
	if (bits % BITS_PER_LONG)
 | 
						|
		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 | 
						|
			return false;
 | 
						|
	return true;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_subset);
 | 
						|
 | 
						|
#define BITMAP_WEIGHT(FETCH, bits)	\
 | 
						|
({										\
 | 
						|
	unsigned int __bits = (bits), idx, w = 0;				\
 | 
						|
										\
 | 
						|
	for (idx = 0; idx < __bits / BITS_PER_LONG; idx++)			\
 | 
						|
		w += hweight_long(FETCH);					\
 | 
						|
										\
 | 
						|
	if (__bits % BITS_PER_LONG)						\
 | 
						|
		w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits));	\
 | 
						|
										\
 | 
						|
	w;									\
 | 
						|
})
 | 
						|
 | 
						|
unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 | 
						|
{
 | 
						|
	return BITMAP_WEIGHT(bitmap[idx], bits);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_weight);
 | 
						|
 | 
						|
unsigned int __bitmap_weight_and(const unsigned long *bitmap1,
 | 
						|
				const unsigned long *bitmap2, unsigned int bits)
 | 
						|
{
 | 
						|
	return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_weight_and);
 | 
						|
 | 
						|
void __bitmap_set(unsigned long *map, unsigned int start, int len)
 | 
						|
{
 | 
						|
	unsigned long *p = map + BIT_WORD(start);
 | 
						|
	const unsigned int size = start + len;
 | 
						|
	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 | 
						|
	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 | 
						|
 | 
						|
	while (len - bits_to_set >= 0) {
 | 
						|
		*p |= mask_to_set;
 | 
						|
		len -= bits_to_set;
 | 
						|
		bits_to_set = BITS_PER_LONG;
 | 
						|
		mask_to_set = ~0UL;
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
	if (len) {
 | 
						|
		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 | 
						|
		*p |= mask_to_set;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_set);
 | 
						|
 | 
						|
void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 | 
						|
{
 | 
						|
	unsigned long *p = map + BIT_WORD(start);
 | 
						|
	const unsigned int size = start + len;
 | 
						|
	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 | 
						|
	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 | 
						|
 | 
						|
	while (len - bits_to_clear >= 0) {
 | 
						|
		*p &= ~mask_to_clear;
 | 
						|
		len -= bits_to_clear;
 | 
						|
		bits_to_clear = BITS_PER_LONG;
 | 
						|
		mask_to_clear = ~0UL;
 | 
						|
		p++;
 | 
						|
	}
 | 
						|
	if (len) {
 | 
						|
		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 | 
						|
		*p &= ~mask_to_clear;
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__bitmap_clear);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 | 
						|
 * @map: The address to base the search on
 | 
						|
 * @size: The bitmap size in bits
 | 
						|
 * @start: The bitnumber to start searching at
 | 
						|
 * @nr: The number of zeroed bits we're looking for
 | 
						|
 * @align_mask: Alignment mask for zero area
 | 
						|
 * @align_offset: Alignment offset for zero area.
 | 
						|
 *
 | 
						|
 * The @align_mask should be one less than a power of 2; the effect is that
 | 
						|
 * the bit offset of all zero areas this function finds plus @align_offset
 | 
						|
 * is multiple of that power of 2.
 | 
						|
 */
 | 
						|
unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 | 
						|
					     unsigned long size,
 | 
						|
					     unsigned long start,
 | 
						|
					     unsigned int nr,
 | 
						|
					     unsigned long align_mask,
 | 
						|
					     unsigned long align_offset)
 | 
						|
{
 | 
						|
	unsigned long index, end, i;
 | 
						|
again:
 | 
						|
	index = find_next_zero_bit(map, size, start);
 | 
						|
 | 
						|
	/* Align allocation */
 | 
						|
	index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 | 
						|
 | 
						|
	end = index + nr;
 | 
						|
	if (end > size)
 | 
						|
		return end;
 | 
						|
	i = find_next_bit(map, end, index);
 | 
						|
	if (i < end) {
 | 
						|
		start = i + 1;
 | 
						|
		goto again;
 | 
						|
	}
 | 
						|
	return index;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 | 
						|
 | 
						|
/*
 | 
						|
 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 | 
						|
 * second version by Paul Jackson, third by Joe Korty.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 | 
						|
 *
 | 
						|
 * @ubuf: pointer to user buffer containing string.
 | 
						|
 * @ulen: buffer size in bytes.  If string is smaller than this
 | 
						|
 *    then it must be terminated with a \0.
 | 
						|
 * @maskp: pointer to bitmap array that will contain result.
 | 
						|
 * @nmaskbits: size of bitmap, in bits.
 | 
						|
 */
 | 
						|
int bitmap_parse_user(const char __user *ubuf,
 | 
						|
			unsigned int ulen, unsigned long *maskp,
 | 
						|
			int nmaskbits)
 | 
						|
{
 | 
						|
	char *buf;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	buf = memdup_user_nul(ubuf, ulen);
 | 
						|
	if (IS_ERR(buf))
 | 
						|
		return PTR_ERR(buf);
 | 
						|
 | 
						|
	ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
 | 
						|
 | 
						|
	kfree(buf);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_parse_user);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 | 
						|
 * @list: indicates whether the bitmap must be list
 | 
						|
 * @buf: page aligned buffer into which string is placed
 | 
						|
 * @maskp: pointer to bitmap to convert
 | 
						|
 * @nmaskbits: size of bitmap, in bits
 | 
						|
 *
 | 
						|
 * Output format is a comma-separated list of decimal numbers and
 | 
						|
 * ranges if list is specified or hex digits grouped into comma-separated
 | 
						|
 * sets of 8 digits/set. Returns the number of characters written to buf.
 | 
						|
 *
 | 
						|
 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
 | 
						|
 * area and that sufficient storage remains at @buf to accommodate the
 | 
						|
 * bitmap_print_to_pagebuf() output. Returns the number of characters
 | 
						|
 * actually printed to @buf, excluding terminating '\0'.
 | 
						|
 */
 | 
						|
int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 | 
						|
			    int nmaskbits)
 | 
						|
{
 | 
						|
	ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
 | 
						|
 | 
						|
	return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 | 
						|
		      scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_print_to_buf  - convert bitmap to list or hex format ASCII string
 | 
						|
 * @list: indicates whether the bitmap must be list
 | 
						|
 *      true:  print in decimal list format
 | 
						|
 *      false: print in hexadecimal bitmask format
 | 
						|
 * @buf: buffer into which string is placed
 | 
						|
 * @maskp: pointer to bitmap to convert
 | 
						|
 * @nmaskbits: size of bitmap, in bits
 | 
						|
 * @off: in the string from which we are copying, We copy to @buf
 | 
						|
 * @count: the maximum number of bytes to print
 | 
						|
 */
 | 
						|
static int bitmap_print_to_buf(bool list, char *buf, const unsigned long *maskp,
 | 
						|
		int nmaskbits, loff_t off, size_t count)
 | 
						|
{
 | 
						|
	const char *fmt = list ? "%*pbl\n" : "%*pb\n";
 | 
						|
	ssize_t size;
 | 
						|
	void *data;
 | 
						|
 | 
						|
	data = kasprintf(GFP_KERNEL, fmt, nmaskbits, maskp);
 | 
						|
	if (!data)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	size = memory_read_from_buffer(buf, count, &off, data, strlen(data) + 1);
 | 
						|
	kfree(data);
 | 
						|
 | 
						|
	return size;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_print_bitmask_to_buf  - convert bitmap to hex bitmask format ASCII string
 | 
						|
 * @buf: buffer into which string is placed
 | 
						|
 * @maskp: pointer to bitmap to convert
 | 
						|
 * @nmaskbits: size of bitmap, in bits
 | 
						|
 * @off: in the string from which we are copying, We copy to @buf
 | 
						|
 * @count: the maximum number of bytes to print
 | 
						|
 *
 | 
						|
 * The bitmap_print_to_pagebuf() is used indirectly via its cpumap wrapper
 | 
						|
 * cpumap_print_to_pagebuf() or directly by drivers to export hexadecimal
 | 
						|
 * bitmask and decimal list to userspace by sysfs ABI.
 | 
						|
 * Drivers might be using a normal attribute for this kind of ABIs. A
 | 
						|
 * normal attribute typically has show entry as below::
 | 
						|
 *
 | 
						|
 *   static ssize_t example_attribute_show(struct device *dev,
 | 
						|
 * 		struct device_attribute *attr, char *buf)
 | 
						|
 *   {
 | 
						|
 * 	...
 | 
						|
 * 	return bitmap_print_to_pagebuf(true, buf, &mask, nr_trig_max);
 | 
						|
 *   }
 | 
						|
 *
 | 
						|
 * show entry of attribute has no offset and count parameters and this
 | 
						|
 * means the file is limited to one page only.
 | 
						|
 * bitmap_print_to_pagebuf() API works terribly well for this kind of
 | 
						|
 * normal attribute with buf parameter and without offset, count::
 | 
						|
 *
 | 
						|
 *   bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 | 
						|
 * 			   int nmaskbits)
 | 
						|
 *   {
 | 
						|
 *   }
 | 
						|
 *
 | 
						|
 * The problem is once we have a large bitmap, we have a chance to get a
 | 
						|
 * bitmask or list more than one page. Especially for list, it could be
 | 
						|
 * as complex as 0,3,5,7,9,... We have no simple way to know it exact size.
 | 
						|
 * It turns out bin_attribute is a way to break this limit. bin_attribute
 | 
						|
 * has show entry as below::
 | 
						|
 *
 | 
						|
 *   static ssize_t
 | 
						|
 *   example_bin_attribute_show(struct file *filp, struct kobject *kobj,
 | 
						|
 * 		struct bin_attribute *attr, char *buf,
 | 
						|
 * 		loff_t offset, size_t count)
 | 
						|
 *   {
 | 
						|
 * 	...
 | 
						|
 *   }
 | 
						|
 *
 | 
						|
 * With the new offset and count parameters, this makes sysfs ABI be able
 | 
						|
 * to support file size more than one page. For example, offset could be
 | 
						|
 * >= 4096.
 | 
						|
 * bitmap_print_bitmask_to_buf(), bitmap_print_list_to_buf() wit their
 | 
						|
 * cpumap wrapper cpumap_print_bitmask_to_buf(), cpumap_print_list_to_buf()
 | 
						|
 * make those drivers be able to support large bitmask and list after they
 | 
						|
 * move to use bin_attribute. In result, we have to pass the corresponding
 | 
						|
 * parameters such as off, count from bin_attribute show entry to this API.
 | 
						|
 *
 | 
						|
 * The role of cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf()
 | 
						|
 * is similar with cpumap_print_to_pagebuf(),  the difference is that
 | 
						|
 * bitmap_print_to_pagebuf() mainly serves sysfs attribute with the assumption
 | 
						|
 * the destination buffer is exactly one page and won't be more than one page.
 | 
						|
 * cpumap_print_bitmask_to_buf() and cpumap_print_list_to_buf(), on the other
 | 
						|
 * hand, mainly serves bin_attribute which doesn't work with exact one page,
 | 
						|
 * and it can break the size limit of converted decimal list and hexadecimal
 | 
						|
 * bitmask.
 | 
						|
 *
 | 
						|
 * WARNING!
 | 
						|
 *
 | 
						|
 * This function is not a replacement for sprintf() or bitmap_print_to_pagebuf().
 | 
						|
 * It is intended to workaround sysfs limitations discussed above and should be
 | 
						|
 * used carefully in general case for the following reasons:
 | 
						|
 *
 | 
						|
 *  - Time complexity is O(nbits^2/count), comparing to O(nbits) for snprintf().
 | 
						|
 *  - Memory complexity is O(nbits), comparing to O(1) for snprintf().
 | 
						|
 *  - @off and @count are NOT offset and number of bits to print.
 | 
						|
 *  - If printing part of bitmap as list, the resulting string is not a correct
 | 
						|
 *    list representation of bitmap. Particularly, some bits within or out of
 | 
						|
 *    related interval may be erroneously set or unset. The format of the string
 | 
						|
 *    may be broken, so bitmap_parselist-like parser may fail parsing it.
 | 
						|
 *  - If printing the whole bitmap as list by parts, user must ensure the order
 | 
						|
 *    of calls of the function such that the offset is incremented linearly.
 | 
						|
 *  - If printing the whole bitmap as list by parts, user must keep bitmap
 | 
						|
 *    unchanged between the very first and very last call. Otherwise concatenated
 | 
						|
 *    result may be incorrect, and format may be broken.
 | 
						|
 *
 | 
						|
 * Returns the number of characters actually printed to @buf
 | 
						|
 */
 | 
						|
int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp,
 | 
						|
				int nmaskbits, loff_t off, size_t count)
 | 
						|
{
 | 
						|
	return bitmap_print_to_buf(false, buf, maskp, nmaskbits, off, count);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_print_bitmask_to_buf);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_print_list_to_buf  - convert bitmap to decimal list format ASCII string
 | 
						|
 * @buf: buffer into which string is placed
 | 
						|
 * @maskp: pointer to bitmap to convert
 | 
						|
 * @nmaskbits: size of bitmap, in bits
 | 
						|
 * @off: in the string from which we are copying, We copy to @buf
 | 
						|
 * @count: the maximum number of bytes to print
 | 
						|
 *
 | 
						|
 * Everything is same with the above bitmap_print_bitmask_to_buf() except
 | 
						|
 * the print format.
 | 
						|
 */
 | 
						|
int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp,
 | 
						|
			     int nmaskbits, loff_t off, size_t count)
 | 
						|
{
 | 
						|
	return bitmap_print_to_buf(true, buf, maskp, nmaskbits, off, count);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_print_list_to_buf);
 | 
						|
 | 
						|
/*
 | 
						|
 * Region 9-38:4/10 describes the following bitmap structure:
 | 
						|
 * 0	   9  12    18			38	     N
 | 
						|
 * .........****......****......****..................
 | 
						|
 *	    ^  ^     ^			 ^	     ^
 | 
						|
 *      start  off   group_len	       end	 nbits
 | 
						|
 */
 | 
						|
struct region {
 | 
						|
	unsigned int start;
 | 
						|
	unsigned int off;
 | 
						|
	unsigned int group_len;
 | 
						|
	unsigned int end;
 | 
						|
	unsigned int nbits;
 | 
						|
};
 | 
						|
 | 
						|
static void bitmap_set_region(const struct region *r, unsigned long *bitmap)
 | 
						|
{
 | 
						|
	unsigned int start;
 | 
						|
 | 
						|
	for (start = r->start; start <= r->end; start += r->group_len)
 | 
						|
		bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
 | 
						|
}
 | 
						|
 | 
						|
static int bitmap_check_region(const struct region *r)
 | 
						|
{
 | 
						|
	if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (r->end >= r->nbits)
 | 
						|
		return -ERANGE;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const char *bitmap_getnum(const char *str, unsigned int *num,
 | 
						|
				 unsigned int lastbit)
 | 
						|
{
 | 
						|
	unsigned long long n;
 | 
						|
	unsigned int len;
 | 
						|
 | 
						|
	if (str[0] == 'N') {
 | 
						|
		*num = lastbit;
 | 
						|
		return str + 1;
 | 
						|
	}
 | 
						|
 | 
						|
	len = _parse_integer(str, 10, &n);
 | 
						|
	if (!len)
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
	if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
 | 
						|
		return ERR_PTR(-EOVERFLOW);
 | 
						|
 | 
						|
	*num = n;
 | 
						|
	return str + len;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool end_of_str(char c)
 | 
						|
{
 | 
						|
	return c == '\0' || c == '\n';
 | 
						|
}
 | 
						|
 | 
						|
static inline bool __end_of_region(char c)
 | 
						|
{
 | 
						|
	return isspace(c) || c == ',';
 | 
						|
}
 | 
						|
 | 
						|
static inline bool end_of_region(char c)
 | 
						|
{
 | 
						|
	return __end_of_region(c) || end_of_str(c);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The format allows commas and whitespaces at the beginning
 | 
						|
 * of the region.
 | 
						|
 */
 | 
						|
static const char *bitmap_find_region(const char *str)
 | 
						|
{
 | 
						|
	while (__end_of_region(*str))
 | 
						|
		str++;
 | 
						|
 | 
						|
	return end_of_str(*str) ? NULL : str;
 | 
						|
}
 | 
						|
 | 
						|
static const char *bitmap_find_region_reverse(const char *start, const char *end)
 | 
						|
{
 | 
						|
	while (start <= end && __end_of_region(*end))
 | 
						|
		end--;
 | 
						|
 | 
						|
	return end;
 | 
						|
}
 | 
						|
 | 
						|
static const char *bitmap_parse_region(const char *str, struct region *r)
 | 
						|
{
 | 
						|
	unsigned int lastbit = r->nbits - 1;
 | 
						|
 | 
						|
	if (!strncasecmp(str, "all", 3)) {
 | 
						|
		r->start = 0;
 | 
						|
		r->end = lastbit;
 | 
						|
		str += 3;
 | 
						|
 | 
						|
		goto check_pattern;
 | 
						|
	}
 | 
						|
 | 
						|
	str = bitmap_getnum(str, &r->start, lastbit);
 | 
						|
	if (IS_ERR(str))
 | 
						|
		return str;
 | 
						|
 | 
						|
	if (end_of_region(*str))
 | 
						|
		goto no_end;
 | 
						|
 | 
						|
	if (*str != '-')
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	str = bitmap_getnum(str + 1, &r->end, lastbit);
 | 
						|
	if (IS_ERR(str))
 | 
						|
		return str;
 | 
						|
 | 
						|
check_pattern:
 | 
						|
	if (end_of_region(*str))
 | 
						|
		goto no_pattern;
 | 
						|
 | 
						|
	if (*str != ':')
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	str = bitmap_getnum(str + 1, &r->off, lastbit);
 | 
						|
	if (IS_ERR(str))
 | 
						|
		return str;
 | 
						|
 | 
						|
	if (*str != '/')
 | 
						|
		return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
	return bitmap_getnum(str + 1, &r->group_len, lastbit);
 | 
						|
 | 
						|
no_end:
 | 
						|
	r->end = r->start;
 | 
						|
no_pattern:
 | 
						|
	r->off = r->end + 1;
 | 
						|
	r->group_len = r->end + 1;
 | 
						|
 | 
						|
	return end_of_str(*str) ? NULL : str;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_parselist - convert list format ASCII string to bitmap
 | 
						|
 * @buf: read user string from this buffer; must be terminated
 | 
						|
 *    with a \0 or \n.
 | 
						|
 * @maskp: write resulting mask here
 | 
						|
 * @nmaskbits: number of bits in mask to be written
 | 
						|
 *
 | 
						|
 * Input format is a comma-separated list of decimal numbers and
 | 
						|
 * ranges.  Consecutively set bits are shown as two hyphen-separated
 | 
						|
 * decimal numbers, the smallest and largest bit numbers set in
 | 
						|
 * the range.
 | 
						|
 * Optionally each range can be postfixed to denote that only parts of it
 | 
						|
 * should be set. The range will divided to groups of specific size.
 | 
						|
 * From each group will be used only defined amount of bits.
 | 
						|
 * Syntax: range:used_size/group_size
 | 
						|
 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 | 
						|
 * The value 'N' can be used as a dynamically substituted token for the
 | 
						|
 * maximum allowed value; i.e (nmaskbits - 1).  Keep in mind that it is
 | 
						|
 * dynamic, so if system changes cause the bitmap width to change, such
 | 
						|
 * as more cores in a CPU list, then any ranges using N will also change.
 | 
						|
 *
 | 
						|
 * Returns: 0 on success, -errno on invalid input strings. Error values:
 | 
						|
 *
 | 
						|
 *   - ``-EINVAL``: wrong region format
 | 
						|
 *   - ``-EINVAL``: invalid character in string
 | 
						|
 *   - ``-ERANGE``: bit number specified too large for mask
 | 
						|
 *   - ``-EOVERFLOW``: integer overflow in the input parameters
 | 
						|
 */
 | 
						|
int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
 | 
						|
{
 | 
						|
	struct region r;
 | 
						|
	long ret;
 | 
						|
 | 
						|
	r.nbits = nmaskbits;
 | 
						|
	bitmap_zero(maskp, r.nbits);
 | 
						|
 | 
						|
	while (buf) {
 | 
						|
		buf = bitmap_find_region(buf);
 | 
						|
		if (buf == NULL)
 | 
						|
			return 0;
 | 
						|
 | 
						|
		buf = bitmap_parse_region(buf, &r);
 | 
						|
		if (IS_ERR(buf))
 | 
						|
			return PTR_ERR(buf);
 | 
						|
 | 
						|
		ret = bitmap_check_region(&r);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		bitmap_set_region(&r, maskp);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_parselist);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_parselist_user() - convert user buffer's list format ASCII
 | 
						|
 * string to bitmap
 | 
						|
 *
 | 
						|
 * @ubuf: pointer to user buffer containing string.
 | 
						|
 * @ulen: buffer size in bytes.  If string is smaller than this
 | 
						|
 *    then it must be terminated with a \0.
 | 
						|
 * @maskp: pointer to bitmap array that will contain result.
 | 
						|
 * @nmaskbits: size of bitmap, in bits.
 | 
						|
 *
 | 
						|
 * Wrapper for bitmap_parselist(), providing it with user buffer.
 | 
						|
 */
 | 
						|
int bitmap_parselist_user(const char __user *ubuf,
 | 
						|
			unsigned int ulen, unsigned long *maskp,
 | 
						|
			int nmaskbits)
 | 
						|
{
 | 
						|
	char *buf;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	buf = memdup_user_nul(ubuf, ulen);
 | 
						|
	if (IS_ERR(buf))
 | 
						|
		return PTR_ERR(buf);
 | 
						|
 | 
						|
	ret = bitmap_parselist(buf, maskp, nmaskbits);
 | 
						|
 | 
						|
	kfree(buf);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_parselist_user);
 | 
						|
 | 
						|
static const char *bitmap_get_x32_reverse(const char *start,
 | 
						|
					const char *end, u32 *num)
 | 
						|
{
 | 
						|
	u32 ret = 0;
 | 
						|
	int c, i;
 | 
						|
 | 
						|
	for (i = 0; i < 32; i += 4) {
 | 
						|
		c = hex_to_bin(*end--);
 | 
						|
		if (c < 0)
 | 
						|
			return ERR_PTR(-EINVAL);
 | 
						|
 | 
						|
		ret |= c << i;
 | 
						|
 | 
						|
		if (start > end || __end_of_region(*end))
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	if (hex_to_bin(*end--) >= 0)
 | 
						|
		return ERR_PTR(-EOVERFLOW);
 | 
						|
out:
 | 
						|
	*num = ret;
 | 
						|
	return end;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_parse - convert an ASCII hex string into a bitmap.
 | 
						|
 * @start: pointer to buffer containing string.
 | 
						|
 * @buflen: buffer size in bytes.  If string is smaller than this
 | 
						|
 *    then it must be terminated with a \0 or \n. In that case,
 | 
						|
 *    UINT_MAX may be provided instead of string length.
 | 
						|
 * @maskp: pointer to bitmap array that will contain result.
 | 
						|
 * @nmaskbits: size of bitmap, in bits.
 | 
						|
 *
 | 
						|
 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 | 
						|
 * bits of the resultant bitmask.  No chunk may specify a value larger
 | 
						|
 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 | 
						|
 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 | 
						|
 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
 | 
						|
 * Leading, embedded and trailing whitespace accepted.
 | 
						|
 */
 | 
						|
int bitmap_parse(const char *start, unsigned int buflen,
 | 
						|
		unsigned long *maskp, int nmaskbits)
 | 
						|
{
 | 
						|
	const char *end = strnchrnul(start, buflen, '\n') - 1;
 | 
						|
	int chunks = BITS_TO_U32(nmaskbits);
 | 
						|
	u32 *bitmap = (u32 *)maskp;
 | 
						|
	int unset_bit;
 | 
						|
	int chunk;
 | 
						|
 | 
						|
	for (chunk = 0; ; chunk++) {
 | 
						|
		end = bitmap_find_region_reverse(start, end);
 | 
						|
		if (start > end)
 | 
						|
			break;
 | 
						|
 | 
						|
		if (!chunks--)
 | 
						|
			return -EOVERFLOW;
 | 
						|
 | 
						|
#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
 | 
						|
		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk ^ 1]);
 | 
						|
#else
 | 
						|
		end = bitmap_get_x32_reverse(start, end, &bitmap[chunk]);
 | 
						|
#endif
 | 
						|
		if (IS_ERR(end))
 | 
						|
			return PTR_ERR(end);
 | 
						|
	}
 | 
						|
 | 
						|
	unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
 | 
						|
	if (unset_bit < nmaskbits) {
 | 
						|
		bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
 | 
						|
		return -EOVERFLOW;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_parse);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 | 
						|
 *	@buf: pointer to a bitmap
 | 
						|
 *	@pos: a bit position in @buf (0 <= @pos < @nbits)
 | 
						|
 *	@nbits: number of valid bit positions in @buf
 | 
						|
 *
 | 
						|
 * Map the bit at position @pos in @buf (of length @nbits) to the
 | 
						|
 * ordinal of which set bit it is.  If it is not set or if @pos
 | 
						|
 * is not a valid bit position, map to -1.
 | 
						|
 *
 | 
						|
 * If for example, just bits 4 through 7 are set in @buf, then @pos
 | 
						|
 * values 4 through 7 will get mapped to 0 through 3, respectively,
 | 
						|
 * and other @pos values will get mapped to -1.  When @pos value 7
 | 
						|
 * gets mapped to (returns) @ord value 3 in this example, that means
 | 
						|
 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 | 
						|
 *
 | 
						|
 * The bit positions 0 through @bits are valid positions in @buf.
 | 
						|
 */
 | 
						|
static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 | 
						|
{
 | 
						|
	if (pos >= nbits || !test_bit(pos, buf))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	return bitmap_weight(buf, pos);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 | 
						|
 *	@dst: remapped result
 | 
						|
 *	@src: subset to be remapped
 | 
						|
 *	@old: defines domain of map
 | 
						|
 *	@new: defines range of map
 | 
						|
 *	@nbits: number of bits in each of these bitmaps
 | 
						|
 *
 | 
						|
 * Let @old and @new define a mapping of bit positions, such that
 | 
						|
 * whatever position is held by the n-th set bit in @old is mapped
 | 
						|
 * to the n-th set bit in @new.  In the more general case, allowing
 | 
						|
 * for the possibility that the weight 'w' of @new is less than the
 | 
						|
 * weight of @old, map the position of the n-th set bit in @old to
 | 
						|
 * the position of the m-th set bit in @new, where m == n % w.
 | 
						|
 *
 | 
						|
 * If either of the @old and @new bitmaps are empty, or if @src and
 | 
						|
 * @dst point to the same location, then this routine copies @src
 | 
						|
 * to @dst.
 | 
						|
 *
 | 
						|
 * The positions of unset bits in @old are mapped to themselves
 | 
						|
 * (the identify map).
 | 
						|
 *
 | 
						|
 * Apply the above specified mapping to @src, placing the result in
 | 
						|
 * @dst, clearing any bits previously set in @dst.
 | 
						|
 *
 | 
						|
 * For example, lets say that @old has bits 4 through 7 set, and
 | 
						|
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 | 
						|
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 | 
						|
 * bit positions unchanged.  So if say @src comes into this routine
 | 
						|
 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 | 
						|
 * 13 and 15 set.
 | 
						|
 */
 | 
						|
void bitmap_remap(unsigned long *dst, const unsigned long *src,
 | 
						|
		const unsigned long *old, const unsigned long *new,
 | 
						|
		unsigned int nbits)
 | 
						|
{
 | 
						|
	unsigned int oldbit, w;
 | 
						|
 | 
						|
	if (dst == src)		/* following doesn't handle inplace remaps */
 | 
						|
		return;
 | 
						|
	bitmap_zero(dst, nbits);
 | 
						|
 | 
						|
	w = bitmap_weight(new, nbits);
 | 
						|
	for_each_set_bit(oldbit, src, nbits) {
 | 
						|
		int n = bitmap_pos_to_ord(old, oldbit, nbits);
 | 
						|
 | 
						|
		if (n < 0 || w == 0)
 | 
						|
			set_bit(oldbit, dst);	/* identity map */
 | 
						|
		else
 | 
						|
			set_bit(find_nth_bit(new, nbits, n % w), dst);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_remap);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 | 
						|
 *	@oldbit: bit position to be mapped
 | 
						|
 *	@old: defines domain of map
 | 
						|
 *	@new: defines range of map
 | 
						|
 *	@bits: number of bits in each of these bitmaps
 | 
						|
 *
 | 
						|
 * Let @old and @new define a mapping of bit positions, such that
 | 
						|
 * whatever position is held by the n-th set bit in @old is mapped
 | 
						|
 * to the n-th set bit in @new.  In the more general case, allowing
 | 
						|
 * for the possibility that the weight 'w' of @new is less than the
 | 
						|
 * weight of @old, map the position of the n-th set bit in @old to
 | 
						|
 * the position of the m-th set bit in @new, where m == n % w.
 | 
						|
 *
 | 
						|
 * The positions of unset bits in @old are mapped to themselves
 | 
						|
 * (the identify map).
 | 
						|
 *
 | 
						|
 * Apply the above specified mapping to bit position @oldbit, returning
 | 
						|
 * the new bit position.
 | 
						|
 *
 | 
						|
 * For example, lets say that @old has bits 4 through 7 set, and
 | 
						|
 * @new has bits 12 through 15 set.  This defines the mapping of bit
 | 
						|
 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 | 
						|
 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 | 
						|
 * returns 13.
 | 
						|
 */
 | 
						|
int bitmap_bitremap(int oldbit, const unsigned long *old,
 | 
						|
				const unsigned long *new, int bits)
 | 
						|
{
 | 
						|
	int w = bitmap_weight(new, bits);
 | 
						|
	int n = bitmap_pos_to_ord(old, oldbit, bits);
 | 
						|
	if (n < 0 || w == 0)
 | 
						|
		return oldbit;
 | 
						|
	else
 | 
						|
		return find_nth_bit(new, bits, n % w);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_bitremap);
 | 
						|
 | 
						|
#ifdef CONFIG_NUMA
 | 
						|
/**
 | 
						|
 * bitmap_onto - translate one bitmap relative to another
 | 
						|
 *	@dst: resulting translated bitmap
 | 
						|
 * 	@orig: original untranslated bitmap
 | 
						|
 * 	@relmap: bitmap relative to which translated
 | 
						|
 *	@bits: number of bits in each of these bitmaps
 | 
						|
 *
 | 
						|
 * Set the n-th bit of @dst iff there exists some m such that the
 | 
						|
 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 | 
						|
 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 | 
						|
 * (If you understood the previous sentence the first time your
 | 
						|
 * read it, you're overqualified for your current job.)
 | 
						|
 *
 | 
						|
 * In other words, @orig is mapped onto (surjectively) @dst,
 | 
						|
 * using the map { <n, m> | the n-th bit of @relmap is the
 | 
						|
 * m-th set bit of @relmap }.
 | 
						|
 *
 | 
						|
 * Any set bits in @orig above bit number W, where W is the
 | 
						|
 * weight of (number of set bits in) @relmap are mapped nowhere.
 | 
						|
 * In particular, if for all bits m set in @orig, m >= W, then
 | 
						|
 * @dst will end up empty.  In situations where the possibility
 | 
						|
 * of such an empty result is not desired, one way to avoid it is
 | 
						|
 * to use the bitmap_fold() operator, below, to first fold the
 | 
						|
 * @orig bitmap over itself so that all its set bits x are in the
 | 
						|
 * range 0 <= x < W.  The bitmap_fold() operator does this by
 | 
						|
 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 | 
						|
 *
 | 
						|
 * Example [1] for bitmap_onto():
 | 
						|
 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 | 
						|
 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 | 
						|
 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 | 
						|
 *
 | 
						|
 *  When bit 0 is set in @orig, it means turn on the bit in
 | 
						|
 *  @dst corresponding to whatever is the first bit (if any)
 | 
						|
 *  that is turned on in @relmap.  Since bit 0 was off in the
 | 
						|
 *  above example, we leave off that bit (bit 30) in @dst.
 | 
						|
 *
 | 
						|
 *  When bit 1 is set in @orig (as in the above example), it
 | 
						|
 *  means turn on the bit in @dst corresponding to whatever
 | 
						|
 *  is the second bit that is turned on in @relmap.  The second
 | 
						|
 *  bit in @relmap that was turned on in the above example was
 | 
						|
 *  bit 31, so we turned on bit 31 in @dst.
 | 
						|
 *
 | 
						|
 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 | 
						|
 *  because they were the 4th, 6th, 8th and 10th set bits
 | 
						|
 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 | 
						|
 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 | 
						|
 *
 | 
						|
 *  When bit 11 is set in @orig, it means turn on the bit in
 | 
						|
 *  @dst corresponding to whatever is the twelfth bit that is
 | 
						|
 *  turned on in @relmap.  In the above example, there were
 | 
						|
 *  only ten bits turned on in @relmap (30..39), so that bit
 | 
						|
 *  11 was set in @orig had no affect on @dst.
 | 
						|
 *
 | 
						|
 * Example [2] for bitmap_fold() + bitmap_onto():
 | 
						|
 *  Let's say @relmap has these ten bits set::
 | 
						|
 *
 | 
						|
 *		40 41 42 43 45 48 53 61 74 95
 | 
						|
 *
 | 
						|
 *  (for the curious, that's 40 plus the first ten terms of the
 | 
						|
 *  Fibonacci sequence.)
 | 
						|
 *
 | 
						|
 *  Further lets say we use the following code, invoking
 | 
						|
 *  bitmap_fold() then bitmap_onto, as suggested above to
 | 
						|
 *  avoid the possibility of an empty @dst result::
 | 
						|
 *
 | 
						|
 *	unsigned long *tmp;	// a temporary bitmap's bits
 | 
						|
 *
 | 
						|
 *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 | 
						|
 *	bitmap_onto(dst, tmp, relmap, bits);
 | 
						|
 *
 | 
						|
 *  Then this table shows what various values of @dst would be, for
 | 
						|
 *  various @orig's.  I list the zero-based positions of each set bit.
 | 
						|
 *  The tmp column shows the intermediate result, as computed by
 | 
						|
 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 | 
						|
 *  (the weight of @relmap):
 | 
						|
 *
 | 
						|
 *      =============== ============== =================
 | 
						|
 *      @orig           tmp            @dst
 | 
						|
 *      0                0             40
 | 
						|
 *      1                1             41
 | 
						|
 *      9                9             95
 | 
						|
 *      10               0             40 [#f1]_
 | 
						|
 *      1 3 5 7          1 3 5 7       41 43 48 61
 | 
						|
 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 | 
						|
 *      0 9 18 27        0 9 8 7       40 61 74 95
 | 
						|
 *      0 10 20 30       0             40
 | 
						|
 *      0 11 22 33       0 1 2 3       40 41 42 43
 | 
						|
 *      0 12 24 36       0 2 4 6       40 42 45 53
 | 
						|
 *      78 102 211       1 2 8         41 42 74 [#f1]_
 | 
						|
 *      =============== ============== =================
 | 
						|
 *
 | 
						|
 * .. [#f1]
 | 
						|
 *
 | 
						|
 *     For these marked lines, if we hadn't first done bitmap_fold()
 | 
						|
 *     into tmp, then the @dst result would have been empty.
 | 
						|
 *
 | 
						|
 * If either of @orig or @relmap is empty (no set bits), then @dst
 | 
						|
 * will be returned empty.
 | 
						|
 *
 | 
						|
 * If (as explained above) the only set bits in @orig are in positions
 | 
						|
 * m where m >= W, (where W is the weight of @relmap) then @dst will
 | 
						|
 * once again be returned empty.
 | 
						|
 *
 | 
						|
 * All bits in @dst not set by the above rule are cleared.
 | 
						|
 */
 | 
						|
void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 | 
						|
			const unsigned long *relmap, unsigned int bits)
 | 
						|
{
 | 
						|
	unsigned int n, m;	/* same meaning as in above comment */
 | 
						|
 | 
						|
	if (dst == orig)	/* following doesn't handle inplace mappings */
 | 
						|
		return;
 | 
						|
	bitmap_zero(dst, bits);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The following code is a more efficient, but less
 | 
						|
	 * obvious, equivalent to the loop:
 | 
						|
	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 | 
						|
	 *		n = find_nth_bit(orig, bits, m);
 | 
						|
	 *		if (test_bit(m, orig))
 | 
						|
	 *			set_bit(n, dst);
 | 
						|
	 *	}
 | 
						|
	 */
 | 
						|
 | 
						|
	m = 0;
 | 
						|
	for_each_set_bit(n, relmap, bits) {
 | 
						|
		/* m == bitmap_pos_to_ord(relmap, n, bits) */
 | 
						|
		if (test_bit(m, orig))
 | 
						|
			set_bit(n, dst);
 | 
						|
		m++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 | 
						|
 *	@dst: resulting smaller bitmap
 | 
						|
 *	@orig: original larger bitmap
 | 
						|
 *	@sz: specified size
 | 
						|
 *	@nbits: number of bits in each of these bitmaps
 | 
						|
 *
 | 
						|
 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 | 
						|
 * Clear all other bits in @dst.  See further the comment and
 | 
						|
 * Example [2] for bitmap_onto() for why and how to use this.
 | 
						|
 */
 | 
						|
void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 | 
						|
			unsigned int sz, unsigned int nbits)
 | 
						|
{
 | 
						|
	unsigned int oldbit;
 | 
						|
 | 
						|
	if (dst == orig)	/* following doesn't handle inplace mappings */
 | 
						|
		return;
 | 
						|
	bitmap_zero(dst, nbits);
 | 
						|
 | 
						|
	for_each_set_bit(oldbit, orig, nbits)
 | 
						|
		set_bit(oldbit % sz, dst);
 | 
						|
}
 | 
						|
#endif /* CONFIG_NUMA */
 | 
						|
 | 
						|
/*
 | 
						|
 * Common code for bitmap_*_region() routines.
 | 
						|
 *	bitmap: array of unsigned longs corresponding to the bitmap
 | 
						|
 *	pos: the beginning of the region
 | 
						|
 *	order: region size (log base 2 of number of bits)
 | 
						|
 *	reg_op: operation(s) to perform on that region of bitmap
 | 
						|
 *
 | 
						|
 * Can set, verify and/or release a region of bits in a bitmap,
 | 
						|
 * depending on which combination of REG_OP_* flag bits is set.
 | 
						|
 *
 | 
						|
 * A region of a bitmap is a sequence of bits in the bitmap, of
 | 
						|
 * some size '1 << order' (a power of two), aligned to that same
 | 
						|
 * '1 << order' power of two.
 | 
						|
 *
 | 
						|
 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 | 
						|
 * Returns 0 in all other cases and reg_ops.
 | 
						|
 */
 | 
						|
 | 
						|
enum {
 | 
						|
	REG_OP_ISFREE,		/* true if region is all zero bits */
 | 
						|
	REG_OP_ALLOC,		/* set all bits in region */
 | 
						|
	REG_OP_RELEASE,		/* clear all bits in region */
 | 
						|
};
 | 
						|
 | 
						|
static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
 | 
						|
{
 | 
						|
	int nbits_reg;		/* number of bits in region */
 | 
						|
	int index;		/* index first long of region in bitmap */
 | 
						|
	int offset;		/* bit offset region in bitmap[index] */
 | 
						|
	int nlongs_reg;		/* num longs spanned by region in bitmap */
 | 
						|
	int nbitsinlong;	/* num bits of region in each spanned long */
 | 
						|
	unsigned long mask;	/* bitmask for one long of region */
 | 
						|
	int i;			/* scans bitmap by longs */
 | 
						|
	int ret = 0;		/* return value */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Either nlongs_reg == 1 (for small orders that fit in one long)
 | 
						|
	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 | 
						|
	 */
 | 
						|
	nbits_reg = 1 << order;
 | 
						|
	index = pos / BITS_PER_LONG;
 | 
						|
	offset = pos - (index * BITS_PER_LONG);
 | 
						|
	nlongs_reg = BITS_TO_LONGS(nbits_reg);
 | 
						|
	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 | 
						|
	 * overflows if nbitsinlong == BITS_PER_LONG.
 | 
						|
	 */
 | 
						|
	mask = (1UL << (nbitsinlong - 1));
 | 
						|
	mask += mask - 1;
 | 
						|
	mask <<= offset;
 | 
						|
 | 
						|
	switch (reg_op) {
 | 
						|
	case REG_OP_ISFREE:
 | 
						|
		for (i = 0; i < nlongs_reg; i++) {
 | 
						|
			if (bitmap[index + i] & mask)
 | 
						|
				goto done;
 | 
						|
		}
 | 
						|
		ret = 1;	/* all bits in region free (zero) */
 | 
						|
		break;
 | 
						|
 | 
						|
	case REG_OP_ALLOC:
 | 
						|
		for (i = 0; i < nlongs_reg; i++)
 | 
						|
			bitmap[index + i] |= mask;
 | 
						|
		break;
 | 
						|
 | 
						|
	case REG_OP_RELEASE:
 | 
						|
		for (i = 0; i < nlongs_reg; i++)
 | 
						|
			bitmap[index + i] &= ~mask;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
done:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_find_free_region - find a contiguous aligned mem region
 | 
						|
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 | 
						|
 *	@bits: number of bits in the bitmap
 | 
						|
 *	@order: region size (log base 2 of number of bits) to find
 | 
						|
 *
 | 
						|
 * Find a region of free (zero) bits in a @bitmap of @bits bits and
 | 
						|
 * allocate them (set them to one).  Only consider regions of length
 | 
						|
 * a power (@order) of two, aligned to that power of two, which
 | 
						|
 * makes the search algorithm much faster.
 | 
						|
 *
 | 
						|
 * Return the bit offset in bitmap of the allocated region,
 | 
						|
 * or -errno on failure.
 | 
						|
 */
 | 
						|
int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
 | 
						|
{
 | 
						|
	unsigned int pos, end;		/* scans bitmap by regions of size order */
 | 
						|
 | 
						|
	for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
 | 
						|
		if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 | 
						|
			continue;
 | 
						|
		__reg_op(bitmap, pos, order, REG_OP_ALLOC);
 | 
						|
		return pos;
 | 
						|
	}
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_find_free_region);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_release_region - release allocated bitmap region
 | 
						|
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 | 
						|
 *	@pos: beginning of bit region to release
 | 
						|
 *	@order: region size (log base 2 of number of bits) to release
 | 
						|
 *
 | 
						|
 * This is the complement to __bitmap_find_free_region() and releases
 | 
						|
 * the found region (by clearing it in the bitmap).
 | 
						|
 *
 | 
						|
 * No return value.
 | 
						|
 */
 | 
						|
void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
 | 
						|
{
 | 
						|
	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_release_region);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_allocate_region - allocate bitmap region
 | 
						|
 *	@bitmap: array of unsigned longs corresponding to the bitmap
 | 
						|
 *	@pos: beginning of bit region to allocate
 | 
						|
 *	@order: region size (log base 2 of number of bits) to allocate
 | 
						|
 *
 | 
						|
 * Allocate (set bits in) a specified region of a bitmap.
 | 
						|
 *
 | 
						|
 * Return 0 on success, or %-EBUSY if specified region wasn't
 | 
						|
 * free (not all bits were zero).
 | 
						|
 */
 | 
						|
int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
 | 
						|
{
 | 
						|
	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 | 
						|
		return -EBUSY;
 | 
						|
	return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_allocate_region);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
 | 
						|
 * @dst:   destination buffer
 | 
						|
 * @src:   bitmap to copy
 | 
						|
 * @nbits: number of bits in the bitmap
 | 
						|
 *
 | 
						|
 * Require nbits % BITS_PER_LONG == 0.
 | 
						|
 */
 | 
						|
#ifdef __BIG_ENDIAN
 | 
						|
void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < nbits/BITS_PER_LONG; i++) {
 | 
						|
		if (BITS_PER_LONG == 64)
 | 
						|
			dst[i] = cpu_to_le64(src[i]);
 | 
						|
		else
 | 
						|
			dst[i] = cpu_to_le32(src[i]);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_copy_le);
 | 
						|
#endif
 | 
						|
 | 
						|
unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
 | 
						|
{
 | 
						|
	return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
 | 
						|
			     flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_alloc);
 | 
						|
 | 
						|
unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
 | 
						|
{
 | 
						|
	return bitmap_alloc(nbits, flags | __GFP_ZERO);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_zalloc);
 | 
						|
 | 
						|
unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node)
 | 
						|
{
 | 
						|
	return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long),
 | 
						|
				  flags, node);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_alloc_node);
 | 
						|
 | 
						|
unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node)
 | 
						|
{
 | 
						|
	return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_zalloc_node);
 | 
						|
 | 
						|
void bitmap_free(const unsigned long *bitmap)
 | 
						|
{
 | 
						|
	kfree(bitmap);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_free);
 | 
						|
 | 
						|
static void devm_bitmap_free(void *data)
 | 
						|
{
 | 
						|
	unsigned long *bitmap = data;
 | 
						|
 | 
						|
	bitmap_free(bitmap);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long *devm_bitmap_alloc(struct device *dev,
 | 
						|
				 unsigned int nbits, gfp_t flags)
 | 
						|
{
 | 
						|
	unsigned long *bitmap;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	bitmap = bitmap_alloc(nbits, flags);
 | 
						|
	if (!bitmap)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap);
 | 
						|
	if (ret)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	return bitmap;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(devm_bitmap_alloc);
 | 
						|
 | 
						|
unsigned long *devm_bitmap_zalloc(struct device *dev,
 | 
						|
				  unsigned int nbits, gfp_t flags)
 | 
						|
{
 | 
						|
	return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(devm_bitmap_zalloc);
 | 
						|
 | 
						|
#if BITS_PER_LONG == 64
 | 
						|
/**
 | 
						|
 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
 | 
						|
 *	@bitmap: array of unsigned longs, the destination bitmap
 | 
						|
 *	@buf: array of u32 (in host byte order), the source bitmap
 | 
						|
 *	@nbits: number of bits in @bitmap
 | 
						|
 */
 | 
						|
void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
 | 
						|
{
 | 
						|
	unsigned int i, halfwords;
 | 
						|
 | 
						|
	halfwords = DIV_ROUND_UP(nbits, 32);
 | 
						|
	for (i = 0; i < halfwords; i++) {
 | 
						|
		bitmap[i/2] = (unsigned long) buf[i];
 | 
						|
		if (++i < halfwords)
 | 
						|
			bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Clear tail bits in last word beyond nbits. */
 | 
						|
	if (nbits % BITS_PER_LONG)
 | 
						|
		bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_from_arr32);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
 | 
						|
 *	@buf: array of u32 (in host byte order), the dest bitmap
 | 
						|
 *	@bitmap: array of unsigned longs, the source bitmap
 | 
						|
 *	@nbits: number of bits in @bitmap
 | 
						|
 */
 | 
						|
void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
 | 
						|
{
 | 
						|
	unsigned int i, halfwords;
 | 
						|
 | 
						|
	halfwords = DIV_ROUND_UP(nbits, 32);
 | 
						|
	for (i = 0; i < halfwords; i++) {
 | 
						|
		buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
 | 
						|
		if (++i < halfwords)
 | 
						|
			buf[i] = (u32) (bitmap[i/2] >> 32);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Clear tail bits in last element of array beyond nbits. */
 | 
						|
	if (nbits % BITS_PER_LONG)
 | 
						|
		buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_to_arr32);
 | 
						|
#endif
 | 
						|
 | 
						|
#if BITS_PER_LONG == 32
 | 
						|
/**
 | 
						|
 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap
 | 
						|
 *	@bitmap: array of unsigned longs, the destination bitmap
 | 
						|
 *	@buf: array of u64 (in host byte order), the source bitmap
 | 
						|
 *	@nbits: number of bits in @bitmap
 | 
						|
 */
 | 
						|
void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits)
 | 
						|
{
 | 
						|
	int n;
 | 
						|
 | 
						|
	for (n = nbits; n > 0; n -= 64) {
 | 
						|
		u64 val = *buf++;
 | 
						|
 | 
						|
		*bitmap++ = val;
 | 
						|
		if (n > 32)
 | 
						|
			*bitmap++ = val >> 32;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Clear tail bits in the last word beyond nbits.
 | 
						|
	 *
 | 
						|
	 * Negative index is OK because here we point to the word next
 | 
						|
	 * to the last word of the bitmap, except for nbits == 0, which
 | 
						|
	 * is tested implicitly.
 | 
						|
	 */
 | 
						|
	if (nbits % BITS_PER_LONG)
 | 
						|
		bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_from_arr64);
 | 
						|
 | 
						|
/**
 | 
						|
 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits
 | 
						|
 *	@buf: array of u64 (in host byte order), the dest bitmap
 | 
						|
 *	@bitmap: array of unsigned longs, the source bitmap
 | 
						|
 *	@nbits: number of bits in @bitmap
 | 
						|
 */
 | 
						|
void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits)
 | 
						|
{
 | 
						|
	const unsigned long *end = bitmap + BITS_TO_LONGS(nbits);
 | 
						|
 | 
						|
	while (bitmap < end) {
 | 
						|
		*buf = *bitmap++;
 | 
						|
		if (bitmap < end)
 | 
						|
			*buf |= (u64)(*bitmap++) << 32;
 | 
						|
		buf++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Clear tail bits in the last element of array beyond nbits. */
 | 
						|
	if (nbits % 64)
 | 
						|
		buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(bitmap_to_arr64);
 | 
						|
#endif
 |