mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	Commit5d26a105b5("crypto: prefix module autoloading with "crypto-"") changed the automatic module loading when requesting crypto algorithms to prefix all module requests with "crypto-". This requires all crypto modules to have a crypto specific module alias even if their file name would otherwise match the requested crypto algorithm. Even though commit5d26a105b5added those aliases for a vast amount of modules, it was missing a few. Add the required MODULE_ALIAS_CRYPTO annotations to those files to make them get loaded automatically, again. This fixes, e.g., requesting 'ecb(blowfish-generic)', which used to work with kernels v3.18 and below. Also change MODULE_ALIAS() lines to MODULE_ALIAS_CRYPTO(). The former won't work for crypto modules any more. Fixes:5d26a105b5("crypto: prefix module autoloading with "crypto-"") Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Mathias Krause <minipli@googlemail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
		
			
				
	
	
		
			282 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			282 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* 
 | 
						|
 * Cryptographic API.
 | 
						|
 *
 | 
						|
 * TEA, XTEA, and XETA crypto alogrithms
 | 
						|
 *
 | 
						|
 * The TEA and Xtended TEA algorithms were developed by David Wheeler 
 | 
						|
 * and Roger Needham at the Computer Laboratory of Cambridge University.
 | 
						|
 *
 | 
						|
 * Due to the order of evaluation in XTEA many people have incorrectly
 | 
						|
 * implemented it.  XETA (XTEA in the wrong order), exists for
 | 
						|
 * compatibility with these implementations.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2004 Aaron Grothe ajgrothe@yahoo.com
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <asm/byteorder.h>
 | 
						|
#include <linux/crypto.h>
 | 
						|
#include <linux/types.h>
 | 
						|
 | 
						|
#define TEA_KEY_SIZE		16
 | 
						|
#define TEA_BLOCK_SIZE		8
 | 
						|
#define TEA_ROUNDS		32
 | 
						|
#define TEA_DELTA		0x9e3779b9
 | 
						|
 | 
						|
#define XTEA_KEY_SIZE		16
 | 
						|
#define XTEA_BLOCK_SIZE		8
 | 
						|
#define XTEA_ROUNDS		32
 | 
						|
#define XTEA_DELTA		0x9e3779b9
 | 
						|
 | 
						|
struct tea_ctx {
 | 
						|
	u32 KEY[4];
 | 
						|
};
 | 
						|
 | 
						|
struct xtea_ctx {
 | 
						|
	u32 KEY[4];
 | 
						|
};
 | 
						|
 | 
						|
static int tea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
 | 
						|
		      unsigned int key_len)
 | 
						|
{
 | 
						|
	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *key = (const __le32 *)in_key;
 | 
						|
 | 
						|
	ctx->KEY[0] = le32_to_cpu(key[0]);
 | 
						|
	ctx->KEY[1] = le32_to_cpu(key[1]);
 | 
						|
	ctx->KEY[2] = le32_to_cpu(key[2]);
 | 
						|
	ctx->KEY[3] = le32_to_cpu(key[3]);
 | 
						|
 | 
						|
	return 0; 
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void tea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 | 
						|
{
 | 
						|
	u32 y, z, n, sum = 0;
 | 
						|
	u32 k0, k1, k2, k3;
 | 
						|
	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *in = (const __le32 *)src;
 | 
						|
	__le32 *out = (__le32 *)dst;
 | 
						|
 | 
						|
	y = le32_to_cpu(in[0]);
 | 
						|
	z = le32_to_cpu(in[1]);
 | 
						|
 | 
						|
	k0 = ctx->KEY[0];
 | 
						|
	k1 = ctx->KEY[1];
 | 
						|
	k2 = ctx->KEY[2];
 | 
						|
	k3 = ctx->KEY[3];
 | 
						|
 | 
						|
	n = TEA_ROUNDS;
 | 
						|
 | 
						|
	while (n-- > 0) {
 | 
						|
		sum += TEA_DELTA;
 | 
						|
		y += ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
 | 
						|
		z += ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
 | 
						|
	}
 | 
						|
	
 | 
						|
	out[0] = cpu_to_le32(y);
 | 
						|
	out[1] = cpu_to_le32(z);
 | 
						|
}
 | 
						|
 | 
						|
static void tea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 | 
						|
{
 | 
						|
	u32 y, z, n, sum;
 | 
						|
	u32 k0, k1, k2, k3;
 | 
						|
	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *in = (const __le32 *)src;
 | 
						|
	__le32 *out = (__le32 *)dst;
 | 
						|
 | 
						|
	y = le32_to_cpu(in[0]);
 | 
						|
	z = le32_to_cpu(in[1]);
 | 
						|
 | 
						|
	k0 = ctx->KEY[0];
 | 
						|
	k1 = ctx->KEY[1];
 | 
						|
	k2 = ctx->KEY[2];
 | 
						|
	k3 = ctx->KEY[3];
 | 
						|
 | 
						|
	sum = TEA_DELTA << 5;
 | 
						|
 | 
						|
	n = TEA_ROUNDS;
 | 
						|
 | 
						|
	while (n-- > 0) {
 | 
						|
		z -= ((y << 4) + k2) ^ (y + sum) ^ ((y >> 5) + k3);
 | 
						|
		y -= ((z << 4) + k0) ^ (z + sum) ^ ((z >> 5) + k1);
 | 
						|
		sum -= TEA_DELTA;
 | 
						|
	}
 | 
						|
	
 | 
						|
	out[0] = cpu_to_le32(y);
 | 
						|
	out[1] = cpu_to_le32(z);
 | 
						|
}
 | 
						|
 | 
						|
static int xtea_setkey(struct crypto_tfm *tfm, const u8 *in_key,
 | 
						|
		       unsigned int key_len)
 | 
						|
{
 | 
						|
	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *key = (const __le32 *)in_key;
 | 
						|
 | 
						|
	ctx->KEY[0] = le32_to_cpu(key[0]);
 | 
						|
	ctx->KEY[1] = le32_to_cpu(key[1]);
 | 
						|
	ctx->KEY[2] = le32_to_cpu(key[2]);
 | 
						|
	ctx->KEY[3] = le32_to_cpu(key[3]);
 | 
						|
 | 
						|
	return 0; 
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void xtea_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 | 
						|
{
 | 
						|
	u32 y, z, sum = 0;
 | 
						|
	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
 | 
						|
	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *in = (const __le32 *)src;
 | 
						|
	__le32 *out = (__le32 *)dst;
 | 
						|
 | 
						|
	y = le32_to_cpu(in[0]);
 | 
						|
	z = le32_to_cpu(in[1]);
 | 
						|
 | 
						|
	while (sum != limit) {
 | 
						|
		y += ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum&3]); 
 | 
						|
		sum += XTEA_DELTA;
 | 
						|
		z += ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 &3]); 
 | 
						|
	}
 | 
						|
	
 | 
						|
	out[0] = cpu_to_le32(y);
 | 
						|
	out[1] = cpu_to_le32(z);
 | 
						|
}
 | 
						|
 | 
						|
static void xtea_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 | 
						|
{
 | 
						|
	u32 y, z, sum;
 | 
						|
	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *in = (const __le32 *)src;
 | 
						|
	__le32 *out = (__le32 *)dst;
 | 
						|
 | 
						|
	y = le32_to_cpu(in[0]);
 | 
						|
	z = le32_to_cpu(in[1]);
 | 
						|
 | 
						|
	sum = XTEA_DELTA * XTEA_ROUNDS;
 | 
						|
 | 
						|
	while (sum) {
 | 
						|
		z -= ((y << 4 ^ y >> 5) + y) ^ (sum + ctx->KEY[sum>>11 & 3]);
 | 
						|
		sum -= XTEA_DELTA;
 | 
						|
		y -= ((z << 4 ^ z >> 5) + z) ^ (sum + ctx->KEY[sum & 3]);
 | 
						|
	}
 | 
						|
	
 | 
						|
	out[0] = cpu_to_le32(y);
 | 
						|
	out[1] = cpu_to_le32(z);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void xeta_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 | 
						|
{
 | 
						|
	u32 y, z, sum = 0;
 | 
						|
	u32 limit = XTEA_DELTA * XTEA_ROUNDS;
 | 
						|
	struct xtea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *in = (const __le32 *)src;
 | 
						|
	__le32 *out = (__le32 *)dst;
 | 
						|
 | 
						|
	y = le32_to_cpu(in[0]);
 | 
						|
	z = le32_to_cpu(in[1]);
 | 
						|
 | 
						|
	while (sum != limit) {
 | 
						|
		y += (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum&3];
 | 
						|
		sum += XTEA_DELTA;
 | 
						|
		z += (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 &3];
 | 
						|
	}
 | 
						|
	
 | 
						|
	out[0] = cpu_to_le32(y);
 | 
						|
	out[1] = cpu_to_le32(z);
 | 
						|
}
 | 
						|
 | 
						|
static void xeta_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
 | 
						|
{
 | 
						|
	u32 y, z, sum;
 | 
						|
	struct tea_ctx *ctx = crypto_tfm_ctx(tfm);
 | 
						|
	const __le32 *in = (const __le32 *)src;
 | 
						|
	__le32 *out = (__le32 *)dst;
 | 
						|
 | 
						|
	y = le32_to_cpu(in[0]);
 | 
						|
	z = le32_to_cpu(in[1]);
 | 
						|
 | 
						|
	sum = XTEA_DELTA * XTEA_ROUNDS;
 | 
						|
 | 
						|
	while (sum) {
 | 
						|
		z -= (y << 4 ^ y >> 5) + (y ^ sum) + ctx->KEY[sum>>11 & 3];
 | 
						|
		sum -= XTEA_DELTA;
 | 
						|
		y -= (z << 4 ^ z >> 5) + (z ^ sum) + ctx->KEY[sum & 3];
 | 
						|
	}
 | 
						|
	
 | 
						|
	out[0] = cpu_to_le32(y);
 | 
						|
	out[1] = cpu_to_le32(z);
 | 
						|
}
 | 
						|
 | 
						|
static struct crypto_alg tea_algs[3] = { {
 | 
						|
	.cra_name		=	"tea",
 | 
						|
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | 
						|
	.cra_blocksize		=	TEA_BLOCK_SIZE,
 | 
						|
	.cra_ctxsize		=	sizeof (struct tea_ctx),
 | 
						|
	.cra_alignmask		=	3,
 | 
						|
	.cra_module		=	THIS_MODULE,
 | 
						|
	.cra_u			=	{ .cipher = {
 | 
						|
	.cia_min_keysize	=	TEA_KEY_SIZE,
 | 
						|
	.cia_max_keysize	=	TEA_KEY_SIZE,
 | 
						|
	.cia_setkey		= 	tea_setkey,
 | 
						|
	.cia_encrypt		=	tea_encrypt,
 | 
						|
	.cia_decrypt		=	tea_decrypt } }
 | 
						|
}, {
 | 
						|
	.cra_name		=	"xtea",
 | 
						|
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | 
						|
	.cra_blocksize		=	XTEA_BLOCK_SIZE,
 | 
						|
	.cra_ctxsize		=	sizeof (struct xtea_ctx),
 | 
						|
	.cra_alignmask		=	3,
 | 
						|
	.cra_module		=	THIS_MODULE,
 | 
						|
	.cra_u			=	{ .cipher = {
 | 
						|
	.cia_min_keysize	=	XTEA_KEY_SIZE,
 | 
						|
	.cia_max_keysize	=	XTEA_KEY_SIZE,
 | 
						|
	.cia_setkey		= 	xtea_setkey,
 | 
						|
	.cia_encrypt		=	xtea_encrypt,
 | 
						|
	.cia_decrypt		=	xtea_decrypt } }
 | 
						|
}, {
 | 
						|
	.cra_name		=	"xeta",
 | 
						|
	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,
 | 
						|
	.cra_blocksize		=	XTEA_BLOCK_SIZE,
 | 
						|
	.cra_ctxsize		=	sizeof (struct xtea_ctx),
 | 
						|
	.cra_alignmask		=	3,
 | 
						|
	.cra_module		=	THIS_MODULE,
 | 
						|
	.cra_u			=	{ .cipher = {
 | 
						|
	.cia_min_keysize	=	XTEA_KEY_SIZE,
 | 
						|
	.cia_max_keysize	=	XTEA_KEY_SIZE,
 | 
						|
	.cia_setkey		= 	xtea_setkey,
 | 
						|
	.cia_encrypt		=	xeta_encrypt,
 | 
						|
	.cia_decrypt		=	xeta_decrypt } }
 | 
						|
} };
 | 
						|
 | 
						|
static int __init tea_mod_init(void)
 | 
						|
{
 | 
						|
	return crypto_register_algs(tea_algs, ARRAY_SIZE(tea_algs));
 | 
						|
}
 | 
						|
 | 
						|
static void __exit tea_mod_fini(void)
 | 
						|
{
 | 
						|
	crypto_unregister_algs(tea_algs, ARRAY_SIZE(tea_algs));
 | 
						|
}
 | 
						|
 | 
						|
MODULE_ALIAS_CRYPTO("tea");
 | 
						|
MODULE_ALIAS_CRYPTO("xtea");
 | 
						|
MODULE_ALIAS_CRYPTO("xeta");
 | 
						|
 | 
						|
module_init(tea_mod_init);
 | 
						|
module_exit(tea_mod_fini);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_DESCRIPTION("TEA, XTEA & XETA Cryptographic Algorithms");
 |