mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	Remove the address_space ->tree_lock and use the xa_lock newly added to the radix_tree_root. Rename the address_space ->page_tree to ->i_pages, since we don't really care that it's a tree. [willy@infradead.org: fix nds32, fs/dax.c] Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Acked-by: Jeff Layton <jlayton@redhat.com> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			918 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			918 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * mm/truncate.c - code for taking down pages from address_spaces
 | 
						|
 *
 | 
						|
 * Copyright (C) 2002, Linus Torvalds
 | 
						|
 *
 | 
						|
 * 10Sep2002	Andrew Morton
 | 
						|
 *		Initial version.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/backing-dev.h>
 | 
						|
#include <linux/dax.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/swap.h>
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/pagemap.h>
 | 
						|
#include <linux/highmem.h>
 | 
						|
#include <linux/pagevec.h>
 | 
						|
#include <linux/task_io_accounting_ops.h>
 | 
						|
#include <linux/buffer_head.h>	/* grr. try_to_release_page,
 | 
						|
				   do_invalidatepage */
 | 
						|
#include <linux/shmem_fs.h>
 | 
						|
#include <linux/cleancache.h>
 | 
						|
#include <linux/rmap.h>
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Regular page slots are stabilized by the page lock even without the tree
 | 
						|
 * itself locked.  These unlocked entries need verification under the tree
 | 
						|
 * lock.
 | 
						|
 */
 | 
						|
static inline void __clear_shadow_entry(struct address_space *mapping,
 | 
						|
				pgoff_t index, void *entry)
 | 
						|
{
 | 
						|
	struct radix_tree_node *node;
 | 
						|
	void **slot;
 | 
						|
 | 
						|
	if (!__radix_tree_lookup(&mapping->i_pages, index, &node, &slot))
 | 
						|
		return;
 | 
						|
	if (*slot != entry)
 | 
						|
		return;
 | 
						|
	__radix_tree_replace(&mapping->i_pages, node, slot, NULL,
 | 
						|
			     workingset_update_node);
 | 
						|
	mapping->nrexceptional--;
 | 
						|
}
 | 
						|
 | 
						|
static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
 | 
						|
			       void *entry)
 | 
						|
{
 | 
						|
	xa_lock_irq(&mapping->i_pages);
 | 
						|
	__clear_shadow_entry(mapping, index, entry);
 | 
						|
	xa_unlock_irq(&mapping->i_pages);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unconditionally remove exceptional entries. Usually called from truncate
 | 
						|
 * path. Note that the pagevec may be altered by this function by removing
 | 
						|
 * exceptional entries similar to what pagevec_remove_exceptionals does.
 | 
						|
 */
 | 
						|
static void truncate_exceptional_pvec_entries(struct address_space *mapping,
 | 
						|
				struct pagevec *pvec, pgoff_t *indices,
 | 
						|
				pgoff_t end)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	bool dax, lock;
 | 
						|
 | 
						|
	/* Handled by shmem itself */
 | 
						|
	if (shmem_mapping(mapping))
 | 
						|
		return;
 | 
						|
 | 
						|
	for (j = 0; j < pagevec_count(pvec); j++)
 | 
						|
		if (radix_tree_exceptional_entry(pvec->pages[j]))
 | 
						|
			break;
 | 
						|
 | 
						|
	if (j == pagevec_count(pvec))
 | 
						|
		return;
 | 
						|
 | 
						|
	dax = dax_mapping(mapping);
 | 
						|
	lock = !dax && indices[j] < end;
 | 
						|
	if (lock)
 | 
						|
		xa_lock_irq(&mapping->i_pages);
 | 
						|
 | 
						|
	for (i = j; i < pagevec_count(pvec); i++) {
 | 
						|
		struct page *page = pvec->pages[i];
 | 
						|
		pgoff_t index = indices[i];
 | 
						|
 | 
						|
		if (!radix_tree_exceptional_entry(page)) {
 | 
						|
			pvec->pages[j++] = page;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (index >= end)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (unlikely(dax)) {
 | 
						|
			dax_delete_mapping_entry(mapping, index);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		__clear_shadow_entry(mapping, index, page);
 | 
						|
	}
 | 
						|
 | 
						|
	if (lock)
 | 
						|
		xa_unlock_irq(&mapping->i_pages);
 | 
						|
	pvec->nr = j;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invalidate exceptional entry if easily possible. This handles exceptional
 | 
						|
 * entries for invalidate_inode_pages().
 | 
						|
 */
 | 
						|
static int invalidate_exceptional_entry(struct address_space *mapping,
 | 
						|
					pgoff_t index, void *entry)
 | 
						|
{
 | 
						|
	/* Handled by shmem itself, or for DAX we do nothing. */
 | 
						|
	if (shmem_mapping(mapping) || dax_mapping(mapping))
 | 
						|
		return 1;
 | 
						|
	clear_shadow_entry(mapping, index, entry);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Invalidate exceptional entry if clean. This handles exceptional entries for
 | 
						|
 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
 | 
						|
 */
 | 
						|
static int invalidate_exceptional_entry2(struct address_space *mapping,
 | 
						|
					 pgoff_t index, void *entry)
 | 
						|
{
 | 
						|
	/* Handled by shmem itself */
 | 
						|
	if (shmem_mapping(mapping))
 | 
						|
		return 1;
 | 
						|
	if (dax_mapping(mapping))
 | 
						|
		return dax_invalidate_mapping_entry_sync(mapping, index);
 | 
						|
	clear_shadow_entry(mapping, index, entry);
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * do_invalidatepage - invalidate part or all of a page
 | 
						|
 * @page: the page which is affected
 | 
						|
 * @offset: start of the range to invalidate
 | 
						|
 * @length: length of the range to invalidate
 | 
						|
 *
 | 
						|
 * do_invalidatepage() is called when all or part of the page has become
 | 
						|
 * invalidated by a truncate operation.
 | 
						|
 *
 | 
						|
 * do_invalidatepage() does not have to release all buffers, but it must
 | 
						|
 * ensure that no dirty buffer is left outside @offset and that no I/O
 | 
						|
 * is underway against any of the blocks which are outside the truncation
 | 
						|
 * point.  Because the caller is about to free (and possibly reuse) those
 | 
						|
 * blocks on-disk.
 | 
						|
 */
 | 
						|
void do_invalidatepage(struct page *page, unsigned int offset,
 | 
						|
		       unsigned int length)
 | 
						|
{
 | 
						|
	void (*invalidatepage)(struct page *, unsigned int, unsigned int);
 | 
						|
 | 
						|
	invalidatepage = page->mapping->a_ops->invalidatepage;
 | 
						|
#ifdef CONFIG_BLOCK
 | 
						|
	if (!invalidatepage)
 | 
						|
		invalidatepage = block_invalidatepage;
 | 
						|
#endif
 | 
						|
	if (invalidatepage)
 | 
						|
		(*invalidatepage)(page, offset, length);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If truncate cannot remove the fs-private metadata from the page, the page
 | 
						|
 * becomes orphaned.  It will be left on the LRU and may even be mapped into
 | 
						|
 * user pagetables if we're racing with filemap_fault().
 | 
						|
 *
 | 
						|
 * We need to bale out if page->mapping is no longer equal to the original
 | 
						|
 * mapping.  This happens a) when the VM reclaimed the page while we waited on
 | 
						|
 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
 | 
						|
 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
 | 
						|
 */
 | 
						|
static void
 | 
						|
truncate_cleanup_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (page_mapped(page)) {
 | 
						|
		pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1;
 | 
						|
		unmap_mapping_pages(mapping, page->index, nr, false);
 | 
						|
	}
 | 
						|
 | 
						|
	if (page_has_private(page))
 | 
						|
		do_invalidatepage(page, 0, PAGE_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Some filesystems seem to re-dirty the page even after
 | 
						|
	 * the VM has canceled the dirty bit (eg ext3 journaling).
 | 
						|
	 * Hence dirty accounting check is placed after invalidation.
 | 
						|
	 */
 | 
						|
	cancel_dirty_page(page);
 | 
						|
	ClearPageMappedToDisk(page);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This is for invalidate_mapping_pages().  That function can be called at
 | 
						|
 * any time, and is not supposed to throw away dirty pages.  But pages can
 | 
						|
 * be marked dirty at any time too, so use remove_mapping which safely
 | 
						|
 * discards clean, unused pages.
 | 
						|
 *
 | 
						|
 * Returns non-zero if the page was successfully invalidated.
 | 
						|
 */
 | 
						|
static int
 | 
						|
invalidate_complete_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (page->mapping != mapping)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (page_has_private(page) && !try_to_release_page(page, 0))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	ret = remove_mapping(mapping, page);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int truncate_inode_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	VM_BUG_ON_PAGE(PageTail(page), page);
 | 
						|
 | 
						|
	if (page->mapping != mapping)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	truncate_cleanup_page(mapping, page);
 | 
						|
	delete_from_page_cache(page);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Used to get rid of pages on hardware memory corruption.
 | 
						|
 */
 | 
						|
int generic_error_remove_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (!mapping)
 | 
						|
		return -EINVAL;
 | 
						|
	/*
 | 
						|
	 * Only punch for normal data pages for now.
 | 
						|
	 * Handling other types like directories would need more auditing.
 | 
						|
	 */
 | 
						|
	if (!S_ISREG(mapping->host->i_mode))
 | 
						|
		return -EIO;
 | 
						|
	return truncate_inode_page(mapping, page);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(generic_error_remove_page);
 | 
						|
 | 
						|
/*
 | 
						|
 * Safely invalidate one page from its pagecache mapping.
 | 
						|
 * It only drops clean, unused pages. The page must be locked.
 | 
						|
 *
 | 
						|
 * Returns 1 if the page is successfully invalidated, otherwise 0.
 | 
						|
 */
 | 
						|
int invalidate_inode_page(struct page *page)
 | 
						|
{
 | 
						|
	struct address_space *mapping = page_mapping(page);
 | 
						|
	if (!mapping)
 | 
						|
		return 0;
 | 
						|
	if (PageDirty(page) || PageWriteback(page))
 | 
						|
		return 0;
 | 
						|
	if (page_mapped(page))
 | 
						|
		return 0;
 | 
						|
	return invalidate_complete_page(mapping, page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
 | 
						|
 * @mapping: mapping to truncate
 | 
						|
 * @lstart: offset from which to truncate
 | 
						|
 * @lend: offset to which to truncate (inclusive)
 | 
						|
 *
 | 
						|
 * Truncate the page cache, removing the pages that are between
 | 
						|
 * specified offsets (and zeroing out partial pages
 | 
						|
 * if lstart or lend + 1 is not page aligned).
 | 
						|
 *
 | 
						|
 * Truncate takes two passes - the first pass is nonblocking.  It will not
 | 
						|
 * block on page locks and it will not block on writeback.  The second pass
 | 
						|
 * will wait.  This is to prevent as much IO as possible in the affected region.
 | 
						|
 * The first pass will remove most pages, so the search cost of the second pass
 | 
						|
 * is low.
 | 
						|
 *
 | 
						|
 * We pass down the cache-hot hint to the page freeing code.  Even if the
 | 
						|
 * mapping is large, it is probably the case that the final pages are the most
 | 
						|
 * recently touched, and freeing happens in ascending file offset order.
 | 
						|
 *
 | 
						|
 * Note that since ->invalidatepage() accepts range to invalidate
 | 
						|
 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
 | 
						|
 * page aligned properly.
 | 
						|
 */
 | 
						|
void truncate_inode_pages_range(struct address_space *mapping,
 | 
						|
				loff_t lstart, loff_t lend)
 | 
						|
{
 | 
						|
	pgoff_t		start;		/* inclusive */
 | 
						|
	pgoff_t		end;		/* exclusive */
 | 
						|
	unsigned int	partial_start;	/* inclusive */
 | 
						|
	unsigned int	partial_end;	/* exclusive */
 | 
						|
	struct pagevec	pvec;
 | 
						|
	pgoff_t		indices[PAGEVEC_SIZE];
 | 
						|
	pgoff_t		index;
 | 
						|
	int		i;
 | 
						|
 | 
						|
	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Offsets within partial pages */
 | 
						|
	partial_start = lstart & (PAGE_SIZE - 1);
 | 
						|
	partial_end = (lend + 1) & (PAGE_SIZE - 1);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * 'start' and 'end' always covers the range of pages to be fully
 | 
						|
	 * truncated. Partial pages are covered with 'partial_start' at the
 | 
						|
	 * start of the range and 'partial_end' at the end of the range.
 | 
						|
	 * Note that 'end' is exclusive while 'lend' is inclusive.
 | 
						|
	 */
 | 
						|
	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 | 
						|
	if (lend == -1)
 | 
						|
		/*
 | 
						|
		 * lend == -1 indicates end-of-file so we have to set 'end'
 | 
						|
		 * to the highest possible pgoff_t and since the type is
 | 
						|
		 * unsigned we're using -1.
 | 
						|
		 */
 | 
						|
		end = -1;
 | 
						|
	else
 | 
						|
		end = (lend + 1) >> PAGE_SHIFT;
 | 
						|
 | 
						|
	pagevec_init(&pvec);
 | 
						|
	index = start;
 | 
						|
	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
 | 
						|
			min(end - index, (pgoff_t)PAGEVEC_SIZE),
 | 
						|
			indices)) {
 | 
						|
		/*
 | 
						|
		 * Pagevec array has exceptional entries and we may also fail
 | 
						|
		 * to lock some pages. So we store pages that can be deleted
 | 
						|
		 * in a new pagevec.
 | 
						|
		 */
 | 
						|
		struct pagevec locked_pvec;
 | 
						|
 | 
						|
		pagevec_init(&locked_pvec);
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			/* We rely upon deletion not changing page->index */
 | 
						|
			index = indices[i];
 | 
						|
			if (index >= end)
 | 
						|
				break;
 | 
						|
 | 
						|
			if (radix_tree_exceptional_entry(page))
 | 
						|
				continue;
 | 
						|
 | 
						|
			if (!trylock_page(page))
 | 
						|
				continue;
 | 
						|
			WARN_ON(page_to_index(page) != index);
 | 
						|
			if (PageWriteback(page)) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			if (page->mapping != mapping) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			pagevec_add(&locked_pvec, page);
 | 
						|
		}
 | 
						|
		for (i = 0; i < pagevec_count(&locked_pvec); i++)
 | 
						|
			truncate_cleanup_page(mapping, locked_pvec.pages[i]);
 | 
						|
		delete_from_page_cache_batch(mapping, &locked_pvec);
 | 
						|
		for (i = 0; i < pagevec_count(&locked_pvec); i++)
 | 
						|
			unlock_page(locked_pvec.pages[i]);
 | 
						|
		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		cond_resched();
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
	if (partial_start) {
 | 
						|
		struct page *page = find_lock_page(mapping, start - 1);
 | 
						|
		if (page) {
 | 
						|
			unsigned int top = PAGE_SIZE;
 | 
						|
			if (start > end) {
 | 
						|
				/* Truncation within a single page */
 | 
						|
				top = partial_end;
 | 
						|
				partial_end = 0;
 | 
						|
			}
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			zero_user_segment(page, partial_start, top);
 | 
						|
			cleancache_invalidate_page(mapping, page);
 | 
						|
			if (page_has_private(page))
 | 
						|
				do_invalidatepage(page, partial_start,
 | 
						|
						  top - partial_start);
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (partial_end) {
 | 
						|
		struct page *page = find_lock_page(mapping, end);
 | 
						|
		if (page) {
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			zero_user_segment(page, 0, partial_end);
 | 
						|
			cleancache_invalidate_page(mapping, page);
 | 
						|
			if (page_has_private(page))
 | 
						|
				do_invalidatepage(page, 0,
 | 
						|
						  partial_end);
 | 
						|
			unlock_page(page);
 | 
						|
			put_page(page);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * If the truncation happened within a single page no pages
 | 
						|
	 * will be released, just zeroed, so we can bail out now.
 | 
						|
	 */
 | 
						|
	if (start >= end)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	index = start;
 | 
						|
	for ( ; ; ) {
 | 
						|
		cond_resched();
 | 
						|
		if (!pagevec_lookup_entries(&pvec, mapping, index,
 | 
						|
			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
 | 
						|
			/* If all gone from start onwards, we're done */
 | 
						|
			if (index == start)
 | 
						|
				break;
 | 
						|
			/* Otherwise restart to make sure all gone */
 | 
						|
			index = start;
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
		if (index == start && indices[0] >= end) {
 | 
						|
			/* All gone out of hole to be punched, we're done */
 | 
						|
			pagevec_remove_exceptionals(&pvec);
 | 
						|
			pagevec_release(&pvec);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			/* We rely upon deletion not changing page->index */
 | 
						|
			index = indices[i];
 | 
						|
			if (index >= end) {
 | 
						|
				/* Restart punch to make sure all gone */
 | 
						|
				index = start - 1;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
 | 
						|
			if (radix_tree_exceptional_entry(page))
 | 
						|
				continue;
 | 
						|
 | 
						|
			lock_page(page);
 | 
						|
			WARN_ON(page_to_index(page) != index);
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			truncate_inode_page(mapping, page);
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end);
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
 | 
						|
out:
 | 
						|
	cleancache_invalidate_inode(mapping);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_inode_pages_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_inode_pages - truncate *all* the pages from an offset
 | 
						|
 * @mapping: mapping to truncate
 | 
						|
 * @lstart: offset from which to truncate
 | 
						|
 *
 | 
						|
 * Called under (and serialised by) inode->i_mutex.
 | 
						|
 *
 | 
						|
 * Note: When this function returns, there can be a page in the process of
 | 
						|
 * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
 | 
						|
 * mapping->nrpages can be non-zero when this function returns even after
 | 
						|
 * truncation of the whole mapping.
 | 
						|
 */
 | 
						|
void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
 | 
						|
{
 | 
						|
	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_inode_pages);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_inode_pages_final - truncate *all* pages before inode dies
 | 
						|
 * @mapping: mapping to truncate
 | 
						|
 *
 | 
						|
 * Called under (and serialized by) inode->i_mutex.
 | 
						|
 *
 | 
						|
 * Filesystems have to use this in the .evict_inode path to inform the
 | 
						|
 * VM that this is the final truncate and the inode is going away.
 | 
						|
 */
 | 
						|
void truncate_inode_pages_final(struct address_space *mapping)
 | 
						|
{
 | 
						|
	unsigned long nrexceptional;
 | 
						|
	unsigned long nrpages;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Page reclaim can not participate in regular inode lifetime
 | 
						|
	 * management (can't call iput()) and thus can race with the
 | 
						|
	 * inode teardown.  Tell it when the address space is exiting,
 | 
						|
	 * so that it does not install eviction information after the
 | 
						|
	 * final truncate has begun.
 | 
						|
	 */
 | 
						|
	mapping_set_exiting(mapping);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * When reclaim installs eviction entries, it increases
 | 
						|
	 * nrexceptional first, then decreases nrpages.  Make sure we see
 | 
						|
	 * this in the right order or we might miss an entry.
 | 
						|
	 */
 | 
						|
	nrpages = mapping->nrpages;
 | 
						|
	smp_rmb();
 | 
						|
	nrexceptional = mapping->nrexceptional;
 | 
						|
 | 
						|
	if (nrpages || nrexceptional) {
 | 
						|
		/*
 | 
						|
		 * As truncation uses a lockless tree lookup, cycle
 | 
						|
		 * the tree lock to make sure any ongoing tree
 | 
						|
		 * modification that does not see AS_EXITING is
 | 
						|
		 * completed before starting the final truncate.
 | 
						|
		 */
 | 
						|
		xa_lock_irq(&mapping->i_pages);
 | 
						|
		xa_unlock_irq(&mapping->i_pages);
 | 
						|
 | 
						|
		truncate_inode_pages(mapping, 0);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_inode_pages_final);
 | 
						|
 | 
						|
/**
 | 
						|
 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
 | 
						|
 * @mapping: the address_space which holds the pages to invalidate
 | 
						|
 * @start: the offset 'from' which to invalidate
 | 
						|
 * @end: the offset 'to' which to invalidate (inclusive)
 | 
						|
 *
 | 
						|
 * This function only removes the unlocked pages, if you want to
 | 
						|
 * remove all the pages of one inode, you must call truncate_inode_pages.
 | 
						|
 *
 | 
						|
 * invalidate_mapping_pages() will not block on IO activity. It will not
 | 
						|
 * invalidate pages which are dirty, locked, under writeback or mapped into
 | 
						|
 * pagetables.
 | 
						|
 */
 | 
						|
unsigned long invalidate_mapping_pages(struct address_space *mapping,
 | 
						|
		pgoff_t start, pgoff_t end)
 | 
						|
{
 | 
						|
	pgoff_t indices[PAGEVEC_SIZE];
 | 
						|
	struct pagevec pvec;
 | 
						|
	pgoff_t index = start;
 | 
						|
	unsigned long ret;
 | 
						|
	unsigned long count = 0;
 | 
						|
	int i;
 | 
						|
 | 
						|
	pagevec_init(&pvec);
 | 
						|
	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 | 
						|
			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 | 
						|
			indices)) {
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			/* We rely upon deletion not changing page->index */
 | 
						|
			index = indices[i];
 | 
						|
			if (index > end)
 | 
						|
				break;
 | 
						|
 | 
						|
			if (radix_tree_exceptional_entry(page)) {
 | 
						|
				invalidate_exceptional_entry(mapping, index,
 | 
						|
							     page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			if (!trylock_page(page))
 | 
						|
				continue;
 | 
						|
 | 
						|
			WARN_ON(page_to_index(page) != index);
 | 
						|
 | 
						|
			/* Middle of THP: skip */
 | 
						|
			if (PageTransTail(page)) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			} else if (PageTransHuge(page)) {
 | 
						|
				index += HPAGE_PMD_NR - 1;
 | 
						|
				i += HPAGE_PMD_NR - 1;
 | 
						|
				/*
 | 
						|
				 * 'end' is in the middle of THP. Don't
 | 
						|
				 * invalidate the page as the part outside of
 | 
						|
				 * 'end' could be still useful.
 | 
						|
				 */
 | 
						|
				if (index > end) {
 | 
						|
					unlock_page(page);
 | 
						|
					continue;
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			ret = invalidate_inode_page(page);
 | 
						|
			unlock_page(page);
 | 
						|
			/*
 | 
						|
			 * Invalidation is a hint that the page is no longer
 | 
						|
			 * of interest and try to speed up its reclaim.
 | 
						|
			 */
 | 
						|
			if (!ret)
 | 
						|
				deactivate_file_page(page);
 | 
						|
			count += ret;
 | 
						|
		}
 | 
						|
		pagevec_remove_exceptionals(&pvec);
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		cond_resched();
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
	return count;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(invalidate_mapping_pages);
 | 
						|
 | 
						|
/*
 | 
						|
 * This is like invalidate_complete_page(), except it ignores the page's
 | 
						|
 * refcount.  We do this because invalidate_inode_pages2() needs stronger
 | 
						|
 * invalidation guarantees, and cannot afford to leave pages behind because
 | 
						|
 * shrink_page_list() has a temp ref on them, or because they're transiently
 | 
						|
 * sitting in the lru_cache_add() pagevecs.
 | 
						|
 */
 | 
						|
static int
 | 
						|
invalidate_complete_page2(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	if (page->mapping != mapping)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	xa_lock_irqsave(&mapping->i_pages, flags);
 | 
						|
	if (PageDirty(page))
 | 
						|
		goto failed;
 | 
						|
 | 
						|
	BUG_ON(page_has_private(page));
 | 
						|
	__delete_from_page_cache(page, NULL);
 | 
						|
	xa_unlock_irqrestore(&mapping->i_pages, flags);
 | 
						|
 | 
						|
	if (mapping->a_ops->freepage)
 | 
						|
		mapping->a_ops->freepage(page);
 | 
						|
 | 
						|
	put_page(page);	/* pagecache ref */
 | 
						|
	return 1;
 | 
						|
failed:
 | 
						|
	xa_unlock_irqrestore(&mapping->i_pages, flags);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int do_launder_page(struct address_space *mapping, struct page *page)
 | 
						|
{
 | 
						|
	if (!PageDirty(page))
 | 
						|
		return 0;
 | 
						|
	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
 | 
						|
		return 0;
 | 
						|
	return mapping->a_ops->launder_page(page);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * invalidate_inode_pages2_range - remove range of pages from an address_space
 | 
						|
 * @mapping: the address_space
 | 
						|
 * @start: the page offset 'from' which to invalidate
 | 
						|
 * @end: the page offset 'to' which to invalidate (inclusive)
 | 
						|
 *
 | 
						|
 * Any pages which are found to be mapped into pagetables are unmapped prior to
 | 
						|
 * invalidation.
 | 
						|
 *
 | 
						|
 * Returns -EBUSY if any pages could not be invalidated.
 | 
						|
 */
 | 
						|
int invalidate_inode_pages2_range(struct address_space *mapping,
 | 
						|
				  pgoff_t start, pgoff_t end)
 | 
						|
{
 | 
						|
	pgoff_t indices[PAGEVEC_SIZE];
 | 
						|
	struct pagevec pvec;
 | 
						|
	pgoff_t index;
 | 
						|
	int i;
 | 
						|
	int ret = 0;
 | 
						|
	int ret2 = 0;
 | 
						|
	int did_range_unmap = 0;
 | 
						|
 | 
						|
	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	pagevec_init(&pvec);
 | 
						|
	index = start;
 | 
						|
	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
 | 
						|
			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
 | 
						|
			indices)) {
 | 
						|
		for (i = 0; i < pagevec_count(&pvec); i++) {
 | 
						|
			struct page *page = pvec.pages[i];
 | 
						|
 | 
						|
			/* We rely upon deletion not changing page->index */
 | 
						|
			index = indices[i];
 | 
						|
			if (index > end)
 | 
						|
				break;
 | 
						|
 | 
						|
			if (radix_tree_exceptional_entry(page)) {
 | 
						|
				if (!invalidate_exceptional_entry2(mapping,
 | 
						|
								   index, page))
 | 
						|
					ret = -EBUSY;
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
 | 
						|
			lock_page(page);
 | 
						|
			WARN_ON(page_to_index(page) != index);
 | 
						|
			if (page->mapping != mapping) {
 | 
						|
				unlock_page(page);
 | 
						|
				continue;
 | 
						|
			}
 | 
						|
			wait_on_page_writeback(page);
 | 
						|
			if (page_mapped(page)) {
 | 
						|
				if (!did_range_unmap) {
 | 
						|
					/*
 | 
						|
					 * Zap the rest of the file in one hit.
 | 
						|
					 */
 | 
						|
					unmap_mapping_pages(mapping, index,
 | 
						|
						(1 + end - index), false);
 | 
						|
					did_range_unmap = 1;
 | 
						|
				} else {
 | 
						|
					/*
 | 
						|
					 * Just zap this page
 | 
						|
					 */
 | 
						|
					unmap_mapping_pages(mapping, index,
 | 
						|
								1, false);
 | 
						|
				}
 | 
						|
			}
 | 
						|
			BUG_ON(page_mapped(page));
 | 
						|
			ret2 = do_launder_page(mapping, page);
 | 
						|
			if (ret2 == 0) {
 | 
						|
				if (!invalidate_complete_page2(mapping, page))
 | 
						|
					ret2 = -EBUSY;
 | 
						|
			}
 | 
						|
			if (ret2 < 0)
 | 
						|
				ret = ret2;
 | 
						|
			unlock_page(page);
 | 
						|
		}
 | 
						|
		pagevec_remove_exceptionals(&pvec);
 | 
						|
		pagevec_release(&pvec);
 | 
						|
		cond_resched();
 | 
						|
		index++;
 | 
						|
	}
 | 
						|
	/*
 | 
						|
	 * For DAX we invalidate page tables after invalidating radix tree.  We
 | 
						|
	 * could invalidate page tables while invalidating each entry however
 | 
						|
	 * that would be expensive. And doing range unmapping before doesn't
 | 
						|
	 * work as we have no cheap way to find whether radix tree entry didn't
 | 
						|
	 * get remapped later.
 | 
						|
	 */
 | 
						|
	if (dax_mapping(mapping)) {
 | 
						|
		unmap_mapping_pages(mapping, start, end - start + 1, false);
 | 
						|
	}
 | 
						|
out:
 | 
						|
	cleancache_invalidate_inode(mapping);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
 | 
						|
 | 
						|
/**
 | 
						|
 * invalidate_inode_pages2 - remove all pages from an address_space
 | 
						|
 * @mapping: the address_space
 | 
						|
 *
 | 
						|
 * Any pages which are found to be mapped into pagetables are unmapped prior to
 | 
						|
 * invalidation.
 | 
						|
 *
 | 
						|
 * Returns -EBUSY if any pages could not be invalidated.
 | 
						|
 */
 | 
						|
int invalidate_inode_pages2(struct address_space *mapping)
 | 
						|
{
 | 
						|
	return invalidate_inode_pages2_range(mapping, 0, -1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_pagecache - unmap and remove pagecache that has been truncated
 | 
						|
 * @inode: inode
 | 
						|
 * @newsize: new file size
 | 
						|
 *
 | 
						|
 * inode's new i_size must already be written before truncate_pagecache
 | 
						|
 * is called.
 | 
						|
 *
 | 
						|
 * This function should typically be called before the filesystem
 | 
						|
 * releases resources associated with the freed range (eg. deallocates
 | 
						|
 * blocks). This way, pagecache will always stay logically coherent
 | 
						|
 * with on-disk format, and the filesystem would not have to deal with
 | 
						|
 * situations such as writepage being called for a page that has already
 | 
						|
 * had its underlying blocks deallocated.
 | 
						|
 */
 | 
						|
void truncate_pagecache(struct inode *inode, loff_t newsize)
 | 
						|
{
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
	loff_t holebegin = round_up(newsize, PAGE_SIZE);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * unmap_mapping_range is called twice, first simply for
 | 
						|
	 * efficiency so that truncate_inode_pages does fewer
 | 
						|
	 * single-page unmaps.  However after this first call, and
 | 
						|
	 * before truncate_inode_pages finishes, it is possible for
 | 
						|
	 * private pages to be COWed, which remain after
 | 
						|
	 * truncate_inode_pages finishes, hence the second
 | 
						|
	 * unmap_mapping_range call must be made for correctness.
 | 
						|
	 */
 | 
						|
	unmap_mapping_range(mapping, holebegin, 0, 1);
 | 
						|
	truncate_inode_pages(mapping, newsize);
 | 
						|
	unmap_mapping_range(mapping, holebegin, 0, 1);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_pagecache);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_setsize - update inode and pagecache for a new file size
 | 
						|
 * @inode: inode
 | 
						|
 * @newsize: new file size
 | 
						|
 *
 | 
						|
 * truncate_setsize updates i_size and performs pagecache truncation (if
 | 
						|
 * necessary) to @newsize. It will be typically be called from the filesystem's
 | 
						|
 * setattr function when ATTR_SIZE is passed in.
 | 
						|
 *
 | 
						|
 * Must be called with a lock serializing truncates and writes (generally
 | 
						|
 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
 | 
						|
 * specific block truncation has been performed.
 | 
						|
 */
 | 
						|
void truncate_setsize(struct inode *inode, loff_t newsize)
 | 
						|
{
 | 
						|
	loff_t oldsize = inode->i_size;
 | 
						|
 | 
						|
	i_size_write(inode, newsize);
 | 
						|
	if (newsize > oldsize)
 | 
						|
		pagecache_isize_extended(inode, oldsize, newsize);
 | 
						|
	truncate_pagecache(inode, newsize);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_setsize);
 | 
						|
 | 
						|
/**
 | 
						|
 * pagecache_isize_extended - update pagecache after extension of i_size
 | 
						|
 * @inode:	inode for which i_size was extended
 | 
						|
 * @from:	original inode size
 | 
						|
 * @to:		new inode size
 | 
						|
 *
 | 
						|
 * Handle extension of inode size either caused by extending truncate or by
 | 
						|
 * write starting after current i_size. We mark the page straddling current
 | 
						|
 * i_size RO so that page_mkwrite() is called on the nearest write access to
 | 
						|
 * the page.  This way filesystem can be sure that page_mkwrite() is called on
 | 
						|
 * the page before user writes to the page via mmap after the i_size has been
 | 
						|
 * changed.
 | 
						|
 *
 | 
						|
 * The function must be called after i_size is updated so that page fault
 | 
						|
 * coming after we unlock the page will already see the new i_size.
 | 
						|
 * The function must be called while we still hold i_mutex - this not only
 | 
						|
 * makes sure i_size is stable but also that userspace cannot observe new
 | 
						|
 * i_size value before we are prepared to store mmap writes at new inode size.
 | 
						|
 */
 | 
						|
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
 | 
						|
{
 | 
						|
	int bsize = i_blocksize(inode);
 | 
						|
	loff_t rounded_from;
 | 
						|
	struct page *page;
 | 
						|
	pgoff_t index;
 | 
						|
 | 
						|
	WARN_ON(to > inode->i_size);
 | 
						|
 | 
						|
	if (from >= to || bsize == PAGE_SIZE)
 | 
						|
		return;
 | 
						|
	/* Page straddling @from will not have any hole block created? */
 | 
						|
	rounded_from = round_up(from, bsize);
 | 
						|
	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
 | 
						|
		return;
 | 
						|
 | 
						|
	index = from >> PAGE_SHIFT;
 | 
						|
	page = find_lock_page(inode->i_mapping, index);
 | 
						|
	/* Page not cached? Nothing to do */
 | 
						|
	if (!page)
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * See clear_page_dirty_for_io() for details why set_page_dirty()
 | 
						|
	 * is needed.
 | 
						|
	 */
 | 
						|
	if (page_mkclean(page))
 | 
						|
		set_page_dirty(page);
 | 
						|
	unlock_page(page);
 | 
						|
	put_page(page);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pagecache_isize_extended);
 | 
						|
 | 
						|
/**
 | 
						|
 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
 | 
						|
 * @inode: inode
 | 
						|
 * @lstart: offset of beginning of hole
 | 
						|
 * @lend: offset of last byte of hole
 | 
						|
 *
 | 
						|
 * This function should typically be called before the filesystem
 | 
						|
 * releases resources associated with the freed range (eg. deallocates
 | 
						|
 * blocks). This way, pagecache will always stay logically coherent
 | 
						|
 * with on-disk format, and the filesystem would not have to deal with
 | 
						|
 * situations such as writepage being called for a page that has already
 | 
						|
 * had its underlying blocks deallocated.
 | 
						|
 */
 | 
						|
void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
 | 
						|
{
 | 
						|
	struct address_space *mapping = inode->i_mapping;
 | 
						|
	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
 | 
						|
	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
 | 
						|
	/*
 | 
						|
	 * This rounding is currently just for example: unmap_mapping_range
 | 
						|
	 * expands its hole outwards, whereas we want it to contract the hole
 | 
						|
	 * inwards.  However, existing callers of truncate_pagecache_range are
 | 
						|
	 * doing their own page rounding first.  Note that unmap_mapping_range
 | 
						|
	 * allows holelen 0 for all, and we allow lend -1 for end of file.
 | 
						|
	 */
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
 | 
						|
	 * once (before truncating pagecache), and without "even_cows" flag:
 | 
						|
	 * hole-punching should not remove private COWed pages from the hole.
 | 
						|
	 */
 | 
						|
	if ((u64)unmap_end > (u64)unmap_start)
 | 
						|
		unmap_mapping_range(mapping, unmap_start,
 | 
						|
				    1 + unmap_end - unmap_start, 0);
 | 
						|
	truncate_inode_pages_range(mapping, lstart, lend);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(truncate_pagecache_range);
 |