mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	The continual trickle of small conversion patches is grating on me, and is really not helping. Just get rid of the 'remove_new' member function, which is just an alias for the plain 'remove', and had a comment to that effect: /* * .remove_new() is a relic from a prototype conversion of .remove(). * New drivers are supposed to implement .remove(). Once all drivers are * converted to not use .remove_new any more, it will be dropped. */ This was just a tree-wide 'sed' script that replaced '.remove_new' with '.remove', with some care taken to turn a subsequent tab into two tabs to make things line up. I did do some minimal manual whitespace adjustment for places that used spaces to line things up. Then I just removed the old (sic) .remove_new member function, and this is the end result. No more unnecessary conversion noise. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
		
			
				
	
	
		
			718 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			718 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0-only
 | 
						|
/*
 | 
						|
 * Windfarm PowerMac thermal control.
 | 
						|
 * Control loops for machines with SMU and PPC970MP processors.
 | 
						|
 *
 | 
						|
 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
 | 
						|
 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
 | 
						|
 */
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/device.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/reboot.h>
 | 
						|
#include <linux/of.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
 | 
						|
#include <asm/smu.h>
 | 
						|
 | 
						|
#include "windfarm.h"
 | 
						|
#include "windfarm_pid.h"
 | 
						|
 | 
						|
#define VERSION "0.2"
 | 
						|
 | 
						|
#define DEBUG
 | 
						|
#undef LOTSA_DEBUG
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#define DBG(args...)	printk(args)
 | 
						|
#else
 | 
						|
#define DBG(args...)	do { } while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef LOTSA_DEBUG
 | 
						|
#define DBG_LOTS(args...)	printk(args)
 | 
						|
#else
 | 
						|
#define DBG_LOTS(args...)	do { } while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
/* define this to force CPU overtemp to 60 degree, useful for testing
 | 
						|
 * the overtemp code
 | 
						|
 */
 | 
						|
#undef HACKED_OVERTEMP
 | 
						|
 | 
						|
/* We currently only handle 2 chips, 4 cores... */
 | 
						|
#define NR_CHIPS	2
 | 
						|
#define NR_CORES	4
 | 
						|
#define NR_CPU_FANS	3 * NR_CHIPS
 | 
						|
 | 
						|
/* Controls and sensors */
 | 
						|
static struct wf_sensor *sens_cpu_temp[NR_CORES];
 | 
						|
static struct wf_sensor *sens_cpu_power[NR_CORES];
 | 
						|
static struct wf_sensor *hd_temp;
 | 
						|
static struct wf_sensor *slots_power;
 | 
						|
static struct wf_sensor *u4_temp;
 | 
						|
 | 
						|
static struct wf_control *cpu_fans[NR_CPU_FANS];
 | 
						|
static char *cpu_fan_names[NR_CPU_FANS] = {
 | 
						|
	"cpu-rear-fan-0",
 | 
						|
	"cpu-rear-fan-1",
 | 
						|
	"cpu-front-fan-0",
 | 
						|
	"cpu-front-fan-1",
 | 
						|
	"cpu-pump-0",
 | 
						|
	"cpu-pump-1",
 | 
						|
};
 | 
						|
static struct wf_control *cpufreq_clamp;
 | 
						|
 | 
						|
/* Second pump isn't required (and isn't actually present) */
 | 
						|
#define CPU_FANS_REQD		(NR_CPU_FANS - 2)
 | 
						|
#define FIRST_PUMP		4
 | 
						|
#define LAST_PUMP		5
 | 
						|
 | 
						|
/* We keep a temperature history for average calculation of 180s */
 | 
						|
#define CPU_TEMP_HIST_SIZE	180
 | 
						|
 | 
						|
/* Scale factor for fan speed, *100 */
 | 
						|
static int cpu_fan_scale[NR_CPU_FANS] = {
 | 
						|
	100,
 | 
						|
	100,
 | 
						|
	97,		/* inlet fans run at 97% of exhaust fan */
 | 
						|
	97,
 | 
						|
	100,		/* updated later */
 | 
						|
	100,		/* updated later */
 | 
						|
};
 | 
						|
 | 
						|
static struct wf_control *backside_fan;
 | 
						|
static struct wf_control *slots_fan;
 | 
						|
static struct wf_control *drive_bay_fan;
 | 
						|
 | 
						|
/* PID loop state */
 | 
						|
static struct wf_cpu_pid_state cpu_pid[NR_CORES];
 | 
						|
static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
 | 
						|
static int cpu_thist_pt;
 | 
						|
static s64 cpu_thist_total;
 | 
						|
static s32 cpu_all_tmax = 100 << 16;
 | 
						|
static int cpu_last_target;
 | 
						|
static struct wf_pid_state backside_pid;
 | 
						|
static int backside_tick;
 | 
						|
static struct wf_pid_state slots_pid;
 | 
						|
static bool slots_started;
 | 
						|
static struct wf_pid_state drive_bay_pid;
 | 
						|
static int drive_bay_tick;
 | 
						|
 | 
						|
static int nr_cores;
 | 
						|
static int have_all_controls;
 | 
						|
static int have_all_sensors;
 | 
						|
static bool started;
 | 
						|
 | 
						|
static int failure_state;
 | 
						|
#define FAILURE_SENSOR		1
 | 
						|
#define FAILURE_FAN		2
 | 
						|
#define FAILURE_PERM		4
 | 
						|
#define FAILURE_LOW_OVERTEMP	8
 | 
						|
#define FAILURE_HIGH_OVERTEMP	16
 | 
						|
 | 
						|
/* Overtemp values */
 | 
						|
#define LOW_OVER_AVERAGE	0
 | 
						|
#define LOW_OVER_IMMEDIATE	(10 << 16)
 | 
						|
#define LOW_OVER_CLEAR		((-10) << 16)
 | 
						|
#define HIGH_OVER_IMMEDIATE	(14 << 16)
 | 
						|
#define HIGH_OVER_AVERAGE	(10 << 16)
 | 
						|
#define HIGH_OVER_IMMEDIATE	(14 << 16)
 | 
						|
 | 
						|
 | 
						|
/* Implementation... */
 | 
						|
static int create_cpu_loop(int cpu)
 | 
						|
{
 | 
						|
	int chip = cpu / 2;
 | 
						|
	int core = cpu & 1;
 | 
						|
	struct smu_sdbp_header *hdr;
 | 
						|
	struct smu_sdbp_cpupiddata *piddata;
 | 
						|
	struct wf_cpu_pid_param pid;
 | 
						|
	struct wf_control *main_fan = cpu_fans[0];
 | 
						|
	s32 tmax;
 | 
						|
	int fmin;
 | 
						|
 | 
						|
	/* Get FVT params to get Tmax; if not found, assume default */
 | 
						|
	hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
 | 
						|
	if (hdr) {
 | 
						|
		struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
 | 
						|
		tmax = fvt->maxtemp << 16;
 | 
						|
	} else
 | 
						|
		tmax = 95 << 16;	/* default to 95 degrees C */
 | 
						|
 | 
						|
	/* We keep a global tmax for overtemp calculations */
 | 
						|
	if (tmax < cpu_all_tmax)
 | 
						|
		cpu_all_tmax = tmax;
 | 
						|
 | 
						|
	kfree(hdr);
 | 
						|
 | 
						|
	/* Get PID params from the appropriate SAT */
 | 
						|
	hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
 | 
						|
	if (hdr == NULL) {
 | 
						|
		printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
 | 
						|
	 * 515 for the 2-way.  That appears to be overkill, so for now,
 | 
						|
	 * impose a minimum of 750 or 515.
 | 
						|
	 */
 | 
						|
	fmin = (nr_cores > 2) ? 750 : 515;
 | 
						|
 | 
						|
	/* Initialize PID loop */
 | 
						|
	pid.interval = 1;	/* seconds */
 | 
						|
	pid.history_len = piddata->history_len;
 | 
						|
	pid.gd = piddata->gd;
 | 
						|
	pid.gp = piddata->gp;
 | 
						|
	pid.gr = piddata->gr / piddata->history_len;
 | 
						|
	pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
 | 
						|
	pid.ttarget = tmax - (piddata->target_temp_delta << 16);
 | 
						|
	pid.tmax = tmax;
 | 
						|
	pid.min = main_fan->ops->get_min(main_fan);
 | 
						|
	pid.max = main_fan->ops->get_max(main_fan);
 | 
						|
	if (pid.min < fmin)
 | 
						|
		pid.min = fmin;
 | 
						|
 | 
						|
	wf_cpu_pid_init(&cpu_pid[cpu], &pid);
 | 
						|
 | 
						|
	kfree(hdr);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_max_all_fans(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* We max all CPU fans in case of a sensor error. We also do the
 | 
						|
	 * cpufreq clamping now, even if it's supposedly done later by the
 | 
						|
	 * generic code anyway, we do it earlier here to react faster
 | 
						|
	 */
 | 
						|
	if (cpufreq_clamp)
 | 
						|
		wf_control_set_max(cpufreq_clamp);
 | 
						|
	for (i = 0; i < NR_CPU_FANS; ++i)
 | 
						|
		if (cpu_fans[i])
 | 
						|
			wf_control_set_max(cpu_fans[i]);
 | 
						|
}
 | 
						|
 | 
						|
static int cpu_check_overtemp(s32 temp)
 | 
						|
{
 | 
						|
	int new_state = 0;
 | 
						|
	s32 t_avg, t_old;
 | 
						|
 | 
						|
	/* First check for immediate overtemps */
 | 
						|
	if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
 | 
						|
		new_state |= FAILURE_LOW_OVERTEMP;
 | 
						|
		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 | 
						|
			printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
 | 
						|
			       " temperature !\n");
 | 
						|
	}
 | 
						|
	if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
 | 
						|
		new_state |= FAILURE_HIGH_OVERTEMP;
 | 
						|
		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 | 
						|
			printk(KERN_ERR "windfarm: Critical overtemp due to"
 | 
						|
			       " immediate CPU temperature !\n");
 | 
						|
	}
 | 
						|
 | 
						|
	/* We calculate a history of max temperatures and use that for the
 | 
						|
	 * overtemp management
 | 
						|
	 */
 | 
						|
	t_old = cpu_thist[cpu_thist_pt];
 | 
						|
	cpu_thist[cpu_thist_pt] = temp;
 | 
						|
	cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
 | 
						|
	cpu_thist_total -= t_old;
 | 
						|
	cpu_thist_total += temp;
 | 
						|
	t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
 | 
						|
 | 
						|
	DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
 | 
						|
		 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
 | 
						|
 | 
						|
	/* Now check for average overtemps */
 | 
						|
	if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
 | 
						|
		new_state |= FAILURE_LOW_OVERTEMP;
 | 
						|
		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
 | 
						|
			printk(KERN_ERR "windfarm: Overtemp due to average CPU"
 | 
						|
			       " temperature !\n");
 | 
						|
	}
 | 
						|
	if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
 | 
						|
		new_state |= FAILURE_HIGH_OVERTEMP;
 | 
						|
		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
 | 
						|
			printk(KERN_ERR "windfarm: Critical overtemp due to"
 | 
						|
			       " average CPU temperature !\n");
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now handle overtemp conditions. We don't currently use the windfarm
 | 
						|
	 * overtemp handling core as it's not fully suited to the needs of those
 | 
						|
	 * new machine. This will be fixed later.
 | 
						|
	 */
 | 
						|
	if (new_state) {
 | 
						|
		/* High overtemp -> immediate shutdown */
 | 
						|
		if (new_state & FAILURE_HIGH_OVERTEMP)
 | 
						|
			machine_power_off();
 | 
						|
		if ((failure_state & new_state) != new_state)
 | 
						|
			cpu_max_all_fans();
 | 
						|
		failure_state |= new_state;
 | 
						|
	} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
 | 
						|
		   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
 | 
						|
		printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
 | 
						|
		failure_state &= ~FAILURE_LOW_OVERTEMP;
 | 
						|
	}
 | 
						|
 | 
						|
	return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
 | 
						|
}
 | 
						|
 | 
						|
static void cpu_fans_tick(void)
 | 
						|
{
 | 
						|
	int err, cpu;
 | 
						|
	s32 greatest_delta = 0;
 | 
						|
	s32 temp, power, t_max = 0;
 | 
						|
	int i, t, target = 0;
 | 
						|
	struct wf_sensor *sr;
 | 
						|
	struct wf_control *ct;
 | 
						|
	struct wf_cpu_pid_state *sp;
 | 
						|
 | 
						|
	DBG_LOTS(KERN_DEBUG);
 | 
						|
	for (cpu = 0; cpu < nr_cores; ++cpu) {
 | 
						|
		/* Get CPU core temperature */
 | 
						|
		sr = sens_cpu_temp[cpu];
 | 
						|
		err = sr->ops->get_value(sr, &temp);
 | 
						|
		if (err) {
 | 
						|
			DBG("\n");
 | 
						|
			printk(KERN_WARNING "windfarm: CPU %d temperature "
 | 
						|
			       "sensor error %d\n", cpu, err);
 | 
						|
			failure_state |= FAILURE_SENSOR;
 | 
						|
			cpu_max_all_fans();
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Keep track of highest temp */
 | 
						|
		t_max = max(t_max, temp);
 | 
						|
 | 
						|
		/* Get CPU power */
 | 
						|
		sr = sens_cpu_power[cpu];
 | 
						|
		err = sr->ops->get_value(sr, &power);
 | 
						|
		if (err) {
 | 
						|
			DBG("\n");
 | 
						|
			printk(KERN_WARNING "windfarm: CPU %d power "
 | 
						|
			       "sensor error %d\n", cpu, err);
 | 
						|
			failure_state |= FAILURE_SENSOR;
 | 
						|
			cpu_max_all_fans();
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Run PID */
 | 
						|
		sp = &cpu_pid[cpu];
 | 
						|
		t = wf_cpu_pid_run(sp, power, temp);
 | 
						|
 | 
						|
		if (cpu == 0 || sp->last_delta > greatest_delta) {
 | 
						|
			greatest_delta = sp->last_delta;
 | 
						|
			target = t;
 | 
						|
		}
 | 
						|
		DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
 | 
						|
		    cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
 | 
						|
	}
 | 
						|
	DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
 | 
						|
 | 
						|
	/* Darwin limits decrease to 20 per iteration */
 | 
						|
	if (target < (cpu_last_target - 20))
 | 
						|
		target = cpu_last_target - 20;
 | 
						|
	cpu_last_target = target;
 | 
						|
	for (cpu = 0; cpu < nr_cores; ++cpu)
 | 
						|
		cpu_pid[cpu].target = target;
 | 
						|
 | 
						|
	/* Handle possible overtemps */
 | 
						|
	if (cpu_check_overtemp(t_max))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* Set fans */
 | 
						|
	for (i = 0; i < NR_CPU_FANS; ++i) {
 | 
						|
		ct = cpu_fans[i];
 | 
						|
		if (ct == NULL)
 | 
						|
			continue;
 | 
						|
		err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
 | 
						|
		if (err) {
 | 
						|
			printk(KERN_WARNING "windfarm: fan %s reports "
 | 
						|
			       "error %d\n", ct->name, err);
 | 
						|
			failure_state |= FAILURE_FAN;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Backside/U4 fan */
 | 
						|
static struct wf_pid_param backside_param = {
 | 
						|
	.interval	= 5,
 | 
						|
	.history_len	= 2,
 | 
						|
	.gd		= 48 << 20,
 | 
						|
	.gp		= 5 << 20,
 | 
						|
	.gr		= 0,
 | 
						|
	.itarget	= 64 << 16,
 | 
						|
	.additive	= 1,
 | 
						|
};
 | 
						|
 | 
						|
static void backside_fan_tick(void)
 | 
						|
{
 | 
						|
	s32 temp;
 | 
						|
	int speed;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!backside_fan || !u4_temp)
 | 
						|
		return;
 | 
						|
	if (!backside_tick) {
 | 
						|
		/* first time; initialize things */
 | 
						|
		printk(KERN_INFO "windfarm: Backside control loop started.\n");
 | 
						|
		backside_param.min = backside_fan->ops->get_min(backside_fan);
 | 
						|
		backside_param.max = backside_fan->ops->get_max(backside_fan);
 | 
						|
		wf_pid_init(&backside_pid, &backside_param);
 | 
						|
		backside_tick = 1;
 | 
						|
	}
 | 
						|
	if (--backside_tick > 0)
 | 
						|
		return;
 | 
						|
	backside_tick = backside_pid.param.interval;
 | 
						|
 | 
						|
	err = u4_temp->ops->get_value(u4_temp, &temp);
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
 | 
						|
		       err);
 | 
						|
		failure_state |= FAILURE_SENSOR;
 | 
						|
		wf_control_set_max(backside_fan);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	speed = wf_pid_run(&backside_pid, temp);
 | 
						|
	DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
 | 
						|
		 FIX32TOPRINT(temp), speed);
 | 
						|
 | 
						|
	err = backside_fan->ops->set_value(backside_fan, speed);
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
 | 
						|
		failure_state |= FAILURE_FAN;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Drive bay fan */
 | 
						|
static struct wf_pid_param drive_bay_prm = {
 | 
						|
	.interval	= 5,
 | 
						|
	.history_len	= 2,
 | 
						|
	.gd		= 30 << 20,
 | 
						|
	.gp		= 5 << 20,
 | 
						|
	.gr		= 0,
 | 
						|
	.itarget	= 40 << 16,
 | 
						|
	.additive	= 1,
 | 
						|
};
 | 
						|
 | 
						|
static void drive_bay_fan_tick(void)
 | 
						|
{
 | 
						|
	s32 temp;
 | 
						|
	int speed;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!drive_bay_fan || !hd_temp)
 | 
						|
		return;
 | 
						|
	if (!drive_bay_tick) {
 | 
						|
		/* first time; initialize things */
 | 
						|
		printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
 | 
						|
		drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
 | 
						|
		drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
 | 
						|
		wf_pid_init(&drive_bay_pid, &drive_bay_prm);
 | 
						|
		drive_bay_tick = 1;
 | 
						|
	}
 | 
						|
	if (--drive_bay_tick > 0)
 | 
						|
		return;
 | 
						|
	drive_bay_tick = drive_bay_pid.param.interval;
 | 
						|
 | 
						|
	err = hd_temp->ops->get_value(hd_temp, &temp);
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_WARNING "windfarm: drive bay temp sensor "
 | 
						|
		       "error %d\n", err);
 | 
						|
		failure_state |= FAILURE_SENSOR;
 | 
						|
		wf_control_set_max(drive_bay_fan);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	speed = wf_pid_run(&drive_bay_pid, temp);
 | 
						|
	DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
 | 
						|
		 FIX32TOPRINT(temp), speed);
 | 
						|
 | 
						|
	err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
 | 
						|
		failure_state |= FAILURE_FAN;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* PCI slots area fan */
 | 
						|
/* This makes the fan speed proportional to the power consumed */
 | 
						|
static struct wf_pid_param slots_param = {
 | 
						|
	.interval	= 1,
 | 
						|
	.history_len	= 2,
 | 
						|
	.gd		= 0,
 | 
						|
	.gp		= 0,
 | 
						|
	.gr		= 0x1277952,
 | 
						|
	.itarget	= 0,
 | 
						|
	.min		= 1560,
 | 
						|
	.max		= 3510,
 | 
						|
};
 | 
						|
 | 
						|
static void slots_fan_tick(void)
 | 
						|
{
 | 
						|
	s32 power;
 | 
						|
	int speed;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (!slots_fan || !slots_power)
 | 
						|
		return;
 | 
						|
	if (!slots_started) {
 | 
						|
		/* first time; initialize things */
 | 
						|
		printk(KERN_INFO "windfarm: Slots control loop started.\n");
 | 
						|
		wf_pid_init(&slots_pid, &slots_param);
 | 
						|
		slots_started = true;
 | 
						|
	}
 | 
						|
 | 
						|
	err = slots_power->ops->get_value(slots_power, &power);
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
 | 
						|
		       err);
 | 
						|
		failure_state |= FAILURE_SENSOR;
 | 
						|
		wf_control_set_max(slots_fan);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	speed = wf_pid_run(&slots_pid, power);
 | 
						|
	DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
 | 
						|
		 FIX32TOPRINT(power), speed);
 | 
						|
 | 
						|
	err = slots_fan->ops->set_value(slots_fan, speed);
 | 
						|
	if (err) {
 | 
						|
		printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
 | 
						|
		failure_state |= FAILURE_FAN;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void set_fail_state(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (cpufreq_clamp)
 | 
						|
		wf_control_set_max(cpufreq_clamp);
 | 
						|
	for (i = 0; i < NR_CPU_FANS; ++i)
 | 
						|
		if (cpu_fans[i])
 | 
						|
			wf_control_set_max(cpu_fans[i]);
 | 
						|
	if (backside_fan)
 | 
						|
		wf_control_set_max(backside_fan);
 | 
						|
	if (slots_fan)
 | 
						|
		wf_control_set_max(slots_fan);
 | 
						|
	if (drive_bay_fan)
 | 
						|
		wf_control_set_max(drive_bay_fan);
 | 
						|
}
 | 
						|
 | 
						|
static void pm112_tick(void)
 | 
						|
{
 | 
						|
	int i, last_failure;
 | 
						|
 | 
						|
	if (!started) {
 | 
						|
		started = true;
 | 
						|
		printk(KERN_INFO "windfarm: CPUs control loops started.\n");
 | 
						|
		for (i = 0; i < nr_cores; ++i) {
 | 
						|
			if (create_cpu_loop(i) < 0) {
 | 
						|
				failure_state = FAILURE_PERM;
 | 
						|
				set_fail_state();
 | 
						|
				break;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
 | 
						|
 | 
						|
#ifdef HACKED_OVERTEMP
 | 
						|
		cpu_all_tmax = 60 << 16;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	/* Permanent failure, bail out */
 | 
						|
	if (failure_state & FAILURE_PERM)
 | 
						|
		return;
 | 
						|
	/* Clear all failure bits except low overtemp which will be eventually
 | 
						|
	 * cleared by the control loop itself
 | 
						|
	 */
 | 
						|
	last_failure = failure_state;
 | 
						|
	failure_state &= FAILURE_LOW_OVERTEMP;
 | 
						|
	cpu_fans_tick();
 | 
						|
	backside_fan_tick();
 | 
						|
	slots_fan_tick();
 | 
						|
	drive_bay_fan_tick();
 | 
						|
 | 
						|
	DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
 | 
						|
		 last_failure, failure_state);
 | 
						|
 | 
						|
	/* Check for failures. Any failure causes cpufreq clamping */
 | 
						|
	if (failure_state && last_failure == 0 && cpufreq_clamp)
 | 
						|
		wf_control_set_max(cpufreq_clamp);
 | 
						|
	if (failure_state == 0 && last_failure && cpufreq_clamp)
 | 
						|
		wf_control_set_min(cpufreq_clamp);
 | 
						|
 | 
						|
	/* That's it for now, we might want to deal with other failures
 | 
						|
	 * differently in the future though
 | 
						|
	 */
 | 
						|
}
 | 
						|
 | 
						|
static void pm112_new_control(struct wf_control *ct)
 | 
						|
{
 | 
						|
	int i, max_exhaust;
 | 
						|
 | 
						|
	if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
 | 
						|
		if (wf_get_control(ct) == 0)
 | 
						|
			cpufreq_clamp = ct;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < NR_CPU_FANS; ++i) {
 | 
						|
		if (!strcmp(ct->name, cpu_fan_names[i])) {
 | 
						|
			if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
 | 
						|
				cpu_fans[i] = ct;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (i >= NR_CPU_FANS) {
 | 
						|
		/* not a CPU fan, try the others */
 | 
						|
		if (!strcmp(ct->name, "backside-fan")) {
 | 
						|
			if (backside_fan == NULL && wf_get_control(ct) == 0)
 | 
						|
				backside_fan = ct;
 | 
						|
		} else if (!strcmp(ct->name, "slots-fan")) {
 | 
						|
			if (slots_fan == NULL && wf_get_control(ct) == 0)
 | 
						|
				slots_fan = ct;
 | 
						|
		} else if (!strcmp(ct->name, "drive-bay-fan")) {
 | 
						|
			if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
 | 
						|
				drive_bay_fan = ct;
 | 
						|
		}
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < CPU_FANS_REQD; ++i)
 | 
						|
		if (cpu_fans[i] == NULL)
 | 
						|
			return;
 | 
						|
 | 
						|
	/* work out pump scaling factors */
 | 
						|
	max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
 | 
						|
	for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
 | 
						|
		if ((ct = cpu_fans[i]) != NULL)
 | 
						|
			cpu_fan_scale[i] =
 | 
						|
				ct->ops->get_max(ct) * 100 / max_exhaust;
 | 
						|
 | 
						|
	have_all_controls = 1;
 | 
						|
}
 | 
						|
 | 
						|
static void pm112_new_sensor(struct wf_sensor *sr)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	if (!strncmp(sr->name, "cpu-temp-", 9)) {
 | 
						|
		i = sr->name[9] - '0';
 | 
						|
		if (sr->name[10] == 0 && i < NR_CORES &&
 | 
						|
		    sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
 | 
						|
			sens_cpu_temp[i] = sr;
 | 
						|
 | 
						|
	} else if (!strncmp(sr->name, "cpu-power-", 10)) {
 | 
						|
		i = sr->name[10] - '0';
 | 
						|
		if (sr->name[11] == 0 && i < NR_CORES &&
 | 
						|
		    sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
 | 
						|
			sens_cpu_power[i] = sr;
 | 
						|
	} else if (!strcmp(sr->name, "hd-temp")) {
 | 
						|
		if (hd_temp == NULL && wf_get_sensor(sr) == 0)
 | 
						|
			hd_temp = sr;
 | 
						|
	} else if (!strcmp(sr->name, "slots-power")) {
 | 
						|
		if (slots_power == NULL && wf_get_sensor(sr) == 0)
 | 
						|
			slots_power = sr;
 | 
						|
	} else if (!strcmp(sr->name, "backside-temp")) {
 | 
						|
		if (u4_temp == NULL && wf_get_sensor(sr) == 0)
 | 
						|
			u4_temp = sr;
 | 
						|
	} else
 | 
						|
		return;
 | 
						|
 | 
						|
	/* check if we have all the sensors we need */
 | 
						|
	for (i = 0; i < nr_cores; ++i)
 | 
						|
		if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
 | 
						|
			return;
 | 
						|
 | 
						|
	have_all_sensors = 1;
 | 
						|
}
 | 
						|
 | 
						|
static int pm112_wf_notify(struct notifier_block *self,
 | 
						|
			   unsigned long event, void *data)
 | 
						|
{
 | 
						|
	switch (event) {
 | 
						|
	case WF_EVENT_NEW_SENSOR:
 | 
						|
		pm112_new_sensor(data);
 | 
						|
		break;
 | 
						|
	case WF_EVENT_NEW_CONTROL:
 | 
						|
		pm112_new_control(data);
 | 
						|
		break;
 | 
						|
	case WF_EVENT_TICK:
 | 
						|
		if (have_all_controls && have_all_sensors)
 | 
						|
			pm112_tick();
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct notifier_block pm112_events = {
 | 
						|
	.notifier_call = pm112_wf_notify,
 | 
						|
};
 | 
						|
 | 
						|
static int wf_pm112_probe(struct platform_device *dev)
 | 
						|
{
 | 
						|
	wf_register_client(&pm112_events);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void wf_pm112_remove(struct platform_device *dev)
 | 
						|
{
 | 
						|
	wf_unregister_client(&pm112_events);
 | 
						|
}
 | 
						|
 | 
						|
static struct platform_driver wf_pm112_driver = {
 | 
						|
	.probe = wf_pm112_probe,
 | 
						|
	.remove = wf_pm112_remove,
 | 
						|
	.driver = {
 | 
						|
		.name = "windfarm",
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
static int __init wf_pm112_init(void)
 | 
						|
{
 | 
						|
	struct device_node *cpu;
 | 
						|
 | 
						|
	if (!of_machine_is_compatible("PowerMac11,2"))
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	/* Count the number of CPU cores */
 | 
						|
	nr_cores = 0;
 | 
						|
	for_each_node_by_type(cpu, "cpu")
 | 
						|
		++nr_cores;
 | 
						|
 | 
						|
	printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
 | 
						|
 | 
						|
#ifdef MODULE
 | 
						|
	request_module("windfarm_smu_controls");
 | 
						|
	request_module("windfarm_smu_sensors");
 | 
						|
	request_module("windfarm_smu_sat");
 | 
						|
	request_module("windfarm_lm75_sensor");
 | 
						|
	request_module("windfarm_max6690_sensor");
 | 
						|
	request_module("windfarm_cpufreq_clamp");
 | 
						|
 | 
						|
#endif /* MODULE */
 | 
						|
 | 
						|
	platform_driver_register(&wf_pm112_driver);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit wf_pm112_exit(void)
 | 
						|
{
 | 
						|
	platform_driver_unregister(&wf_pm112_driver);
 | 
						|
}
 | 
						|
 | 
						|
module_init(wf_pm112_init);
 | 
						|
module_exit(wf_pm112_exit);
 | 
						|
 | 
						|
MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
 | 
						|
MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_ALIAS("platform:windfarm");
 |