mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	Pull timekeeping updates from John Stultz: - More y2038 work from Arnd Bergmann - A new mechanism to allow RTC drivers to specify the resolution of the RTC so the suspend/resume code can make informed decisions whether to inject the suspended time or not in case of fast suspend/resume cycles.
		
			
				
	
	
		
			900 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			900 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/kernel/time.c
 | 
						|
 *
 | 
						|
 *  Copyright (C) 1991, 1992  Linus Torvalds
 | 
						|
 *
 | 
						|
 *  This file contains the interface functions for the various
 | 
						|
 *  time related system calls: time, stime, gettimeofday, settimeofday,
 | 
						|
 *			       adjtime
 | 
						|
 */
 | 
						|
/*
 | 
						|
 * Modification history kernel/time.c
 | 
						|
 *
 | 
						|
 * 1993-09-02    Philip Gladstone
 | 
						|
 *      Created file with time related functions from sched/core.c and adjtimex()
 | 
						|
 * 1993-10-08    Torsten Duwe
 | 
						|
 *      adjtime interface update and CMOS clock write code
 | 
						|
 * 1995-08-13    Torsten Duwe
 | 
						|
 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 | 
						|
 * 1999-01-16    Ulrich Windl
 | 
						|
 *	Introduced error checking for many cases in adjtimex().
 | 
						|
 *	Updated NTP code according to technical memorandum Jan '96
 | 
						|
 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 | 
						|
 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 | 
						|
 *	(Even though the technical memorandum forbids it)
 | 
						|
 * 2004-07-14	 Christoph Lameter
 | 
						|
 *	Added getnstimeofday to allow the posix timer functions to return
 | 
						|
 *	with nanosecond accuracy
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/export.h>
 | 
						|
#include <linux/timex.h>
 | 
						|
#include <linux/capability.h>
 | 
						|
#include <linux/timekeeper_internal.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/syscalls.h>
 | 
						|
#include <linux/security.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/math64.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/compat.h>
 | 
						|
#include <asm/unistd.h>
 | 
						|
 | 
						|
#include <generated/timeconst.h>
 | 
						|
#include "timekeeping.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * The timezone where the local system is located.  Used as a default by some
 | 
						|
 * programs who obtain this value by using gettimeofday.
 | 
						|
 */
 | 
						|
struct timezone sys_tz;
 | 
						|
 | 
						|
EXPORT_SYMBOL(sys_tz);
 | 
						|
 | 
						|
#ifdef __ARCH_WANT_SYS_TIME
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_time() can be implemented in user-level using
 | 
						|
 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 | 
						|
 * why not move it into the appropriate arch directory (for those
 | 
						|
 * architectures that need it).
 | 
						|
 */
 | 
						|
SYSCALL_DEFINE1(time, time_t __user *, tloc)
 | 
						|
{
 | 
						|
	time_t i = get_seconds();
 | 
						|
 | 
						|
	if (tloc) {
 | 
						|
		if (put_user(i,tloc))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
	force_successful_syscall_return();
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_stime() can be implemented in user-level using
 | 
						|
 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 | 
						|
 * why not move it into the appropriate arch directory (for those
 | 
						|
 * architectures that need it).
 | 
						|
 */
 | 
						|
 | 
						|
SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 | 
						|
{
 | 
						|
	struct timespec64 tv;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (get_user(tv.tv_sec, tptr))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	tv.tv_nsec = 0;
 | 
						|
 | 
						|
	err = security_settime64(&tv, NULL);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	do_settimeofday64(&tv);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* __ARCH_WANT_SYS_TIME */
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
#ifdef __ARCH_WANT_COMPAT_SYS_TIME
 | 
						|
 | 
						|
/* compat_time_t is a 32 bit "long" and needs to get converted. */
 | 
						|
COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
 | 
						|
{
 | 
						|
	struct timeval tv;
 | 
						|
	compat_time_t i;
 | 
						|
 | 
						|
	do_gettimeofday(&tv);
 | 
						|
	i = tv.tv_sec;
 | 
						|
 | 
						|
	if (tloc) {
 | 
						|
		if (put_user(i,tloc))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
	force_successful_syscall_return();
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
 | 
						|
{
 | 
						|
	struct timespec64 tv;
 | 
						|
	int err;
 | 
						|
 | 
						|
	if (get_user(tv.tv_sec, tptr))
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	tv.tv_nsec = 0;
 | 
						|
 | 
						|
	err = security_settime64(&tv, NULL);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	do_settimeofday64(&tv);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
 | 
						|
#endif
 | 
						|
 | 
						|
SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
 | 
						|
		struct timezone __user *, tz)
 | 
						|
{
 | 
						|
	if (likely(tv != NULL)) {
 | 
						|
		struct timeval ktv;
 | 
						|
		do_gettimeofday(&ktv);
 | 
						|
		if (copy_to_user(tv, &ktv, sizeof(ktv)))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
	if (unlikely(tz != NULL)) {
 | 
						|
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * In case for some reason the CMOS clock has not already been running
 | 
						|
 * in UTC, but in some local time: The first time we set the timezone,
 | 
						|
 * we will warp the clock so that it is ticking UTC time instead of
 | 
						|
 * local time. Presumably, if someone is setting the timezone then we
 | 
						|
 * are running in an environment where the programs understand about
 | 
						|
 * timezones. This should be done at boot time in the /etc/rc script,
 | 
						|
 * as soon as possible, so that the clock can be set right. Otherwise,
 | 
						|
 * various programs will get confused when the clock gets warped.
 | 
						|
 */
 | 
						|
 | 
						|
int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
 | 
						|
{
 | 
						|
	static int firsttime = 1;
 | 
						|
	int error = 0;
 | 
						|
 | 
						|
	if (tv && !timespec64_valid(tv))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	error = security_settime64(tv, tz);
 | 
						|
	if (error)
 | 
						|
		return error;
 | 
						|
 | 
						|
	if (tz) {
 | 
						|
		/* Verify we're witin the +-15 hrs range */
 | 
						|
		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		sys_tz = *tz;
 | 
						|
		update_vsyscall_tz();
 | 
						|
		if (firsttime) {
 | 
						|
			firsttime = 0;
 | 
						|
			if (!tv)
 | 
						|
				timekeeping_warp_clock();
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (tv)
 | 
						|
		return do_settimeofday64(tv);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
 | 
						|
		struct timezone __user *, tz)
 | 
						|
{
 | 
						|
	struct timespec64 new_ts;
 | 
						|
	struct timeval user_tv;
 | 
						|
	struct timezone new_tz;
 | 
						|
 | 
						|
	if (tv) {
 | 
						|
		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 | 
						|
			return -EFAULT;
 | 
						|
 | 
						|
		if (!timeval_valid(&user_tv))
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		new_ts.tv_sec = user_tv.tv_sec;
 | 
						|
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 | 
						|
	}
 | 
						|
	if (tz) {
 | 
						|
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
 | 
						|
		       struct timezone __user *, tz)
 | 
						|
{
 | 
						|
	if (tv) {
 | 
						|
		struct timeval ktv;
 | 
						|
 | 
						|
		do_gettimeofday(&ktv);
 | 
						|
		if (compat_put_timeval(&ktv, tv))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
	if (tz) {
 | 
						|
		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
 | 
						|
		       struct timezone __user *, tz)
 | 
						|
{
 | 
						|
	struct timespec64 new_ts;
 | 
						|
	struct timeval user_tv;
 | 
						|
	struct timezone new_tz;
 | 
						|
 | 
						|
	if (tv) {
 | 
						|
		if (compat_get_timeval(&user_tv, tv))
 | 
						|
			return -EFAULT;
 | 
						|
		new_ts.tv_sec = user_tv.tv_sec;
 | 
						|
		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 | 
						|
	}
 | 
						|
	if (tz) {
 | 
						|
		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 | 
						|
			return -EFAULT;
 | 
						|
	}
 | 
						|
 | 
						|
	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
 | 
						|
{
 | 
						|
	struct timex txc;		/* Local copy of parameter */
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Copy the user data space into the kernel copy
 | 
						|
	 * structure. But bear in mind that the structures
 | 
						|
	 * may change
 | 
						|
	 */
 | 
						|
	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
 | 
						|
		return -EFAULT;
 | 
						|
	ret = do_adjtimex(&txc);
 | 
						|
	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_COMPAT
 | 
						|
 | 
						|
COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
 | 
						|
{
 | 
						|
	struct timex txc;
 | 
						|
	int err, ret;
 | 
						|
 | 
						|
	err = compat_get_timex(&txc, utp);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	ret = do_adjtimex(&txc);
 | 
						|
 | 
						|
	err = compat_put_timex(utp, &txc);
 | 
						|
	if (err)
 | 
						|
		return err;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert jiffies to milliseconds and back.
 | 
						|
 *
 | 
						|
 * Avoid unnecessary multiplications/divisions in the
 | 
						|
 * two most common HZ cases:
 | 
						|
 */
 | 
						|
unsigned int jiffies_to_msecs(const unsigned long j)
 | 
						|
{
 | 
						|
#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 | 
						|
	return (MSEC_PER_SEC / HZ) * j;
 | 
						|
#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 | 
						|
	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 | 
						|
#else
 | 
						|
# if BITS_PER_LONG == 32
 | 
						|
	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
 | 
						|
# else
 | 
						|
	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(jiffies_to_msecs);
 | 
						|
 | 
						|
unsigned int jiffies_to_usecs(const unsigned long j)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Hz usually doesn't go much further MSEC_PER_SEC.
 | 
						|
	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
 | 
						|
	 */
 | 
						|
	BUILD_BUG_ON(HZ > USEC_PER_SEC);
 | 
						|
 | 
						|
#if !(USEC_PER_SEC % HZ)
 | 
						|
	return (USEC_PER_SEC / HZ) * j;
 | 
						|
#else
 | 
						|
# if BITS_PER_LONG == 32
 | 
						|
	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
 | 
						|
# else
 | 
						|
	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
 | 
						|
# endif
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(jiffies_to_usecs);
 | 
						|
 | 
						|
/**
 | 
						|
 * timespec_trunc - Truncate timespec to a granularity
 | 
						|
 * @t: Timespec
 | 
						|
 * @gran: Granularity in ns.
 | 
						|
 *
 | 
						|
 * Truncate a timespec to a granularity. Always rounds down. gran must
 | 
						|
 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
 | 
						|
 */
 | 
						|
struct timespec timespec_trunc(struct timespec t, unsigned gran)
 | 
						|
{
 | 
						|
	/* Avoid division in the common cases 1 ns and 1 s. */
 | 
						|
	if (gran == 1) {
 | 
						|
		/* nothing */
 | 
						|
	} else if (gran == NSEC_PER_SEC) {
 | 
						|
		t.tv_nsec = 0;
 | 
						|
	} else if (gran > 1 && gran < NSEC_PER_SEC) {
 | 
						|
		t.tv_nsec -= t.tv_nsec % gran;
 | 
						|
	} else {
 | 
						|
		WARN(1, "illegal file time granularity: %u", gran);
 | 
						|
	}
 | 
						|
	return t;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(timespec_trunc);
 | 
						|
 | 
						|
/*
 | 
						|
 * mktime64 - Converts date to seconds.
 | 
						|
 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 | 
						|
 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 | 
						|
 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 | 
						|
 *
 | 
						|
 * [For the Julian calendar (which was used in Russia before 1917,
 | 
						|
 * Britain & colonies before 1752, anywhere else before 1582,
 | 
						|
 * and is still in use by some communities) leave out the
 | 
						|
 * -year/100+year/400 terms, and add 10.]
 | 
						|
 *
 | 
						|
 * This algorithm was first published by Gauss (I think).
 | 
						|
 *
 | 
						|
 * A leap second can be indicated by calling this function with sec as
 | 
						|
 * 60 (allowable under ISO 8601).  The leap second is treated the same
 | 
						|
 * as the following second since they don't exist in UNIX time.
 | 
						|
 *
 | 
						|
 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
 | 
						|
 * tomorrow - (allowable under ISO 8601) is supported.
 | 
						|
 */
 | 
						|
time64_t mktime64(const unsigned int year0, const unsigned int mon0,
 | 
						|
		const unsigned int day, const unsigned int hour,
 | 
						|
		const unsigned int min, const unsigned int sec)
 | 
						|
{
 | 
						|
	unsigned int mon = mon0, year = year0;
 | 
						|
 | 
						|
	/* 1..12 -> 11,12,1..10 */
 | 
						|
	if (0 >= (int) (mon -= 2)) {
 | 
						|
		mon += 12;	/* Puts Feb last since it has leap day */
 | 
						|
		year -= 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return ((((time64_t)
 | 
						|
		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 | 
						|
		  year*365 - 719499
 | 
						|
	    )*24 + hour /* now have hours - midnight tomorrow handled here */
 | 
						|
	  )*60 + min /* now have minutes */
 | 
						|
	)*60 + sec; /* finally seconds */
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(mktime64);
 | 
						|
 | 
						|
#if __BITS_PER_LONG == 32
 | 
						|
/**
 | 
						|
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 | 
						|
 *
 | 
						|
 * @ts:		pointer to timespec variable to be set
 | 
						|
 * @sec:	seconds to set
 | 
						|
 * @nsec:	nanoseconds to set
 | 
						|
 *
 | 
						|
 * Set seconds and nanoseconds field of a timespec variable and
 | 
						|
 * normalize to the timespec storage format
 | 
						|
 *
 | 
						|
 * Note: The tv_nsec part is always in the range of
 | 
						|
 *	0 <= tv_nsec < NSEC_PER_SEC
 | 
						|
 * For negative values only the tv_sec field is negative !
 | 
						|
 */
 | 
						|
void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
 | 
						|
{
 | 
						|
	while (nsec >= NSEC_PER_SEC) {
 | 
						|
		/*
 | 
						|
		 * The following asm() prevents the compiler from
 | 
						|
		 * optimising this loop into a modulo operation. See
 | 
						|
		 * also __iter_div_u64_rem() in include/linux/time.h
 | 
						|
		 */
 | 
						|
		asm("" : "+rm"(nsec));
 | 
						|
		nsec -= NSEC_PER_SEC;
 | 
						|
		++sec;
 | 
						|
	}
 | 
						|
	while (nsec < 0) {
 | 
						|
		asm("" : "+rm"(nsec));
 | 
						|
		nsec += NSEC_PER_SEC;
 | 
						|
		--sec;
 | 
						|
	}
 | 
						|
	ts->tv_sec = sec;
 | 
						|
	ts->tv_nsec = nsec;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(set_normalized_timespec);
 | 
						|
 | 
						|
/**
 | 
						|
 * ns_to_timespec - Convert nanoseconds to timespec
 | 
						|
 * @nsec:       the nanoseconds value to be converted
 | 
						|
 *
 | 
						|
 * Returns the timespec representation of the nsec parameter.
 | 
						|
 */
 | 
						|
struct timespec ns_to_timespec(const s64 nsec)
 | 
						|
{
 | 
						|
	struct timespec ts;
 | 
						|
	s32 rem;
 | 
						|
 | 
						|
	if (!nsec)
 | 
						|
		return (struct timespec) {0, 0};
 | 
						|
 | 
						|
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
 | 
						|
	if (unlikely(rem < 0)) {
 | 
						|
		ts.tv_sec--;
 | 
						|
		rem += NSEC_PER_SEC;
 | 
						|
	}
 | 
						|
	ts.tv_nsec = rem;
 | 
						|
 | 
						|
	return ts;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ns_to_timespec);
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * ns_to_timeval - Convert nanoseconds to timeval
 | 
						|
 * @nsec:       the nanoseconds value to be converted
 | 
						|
 *
 | 
						|
 * Returns the timeval representation of the nsec parameter.
 | 
						|
 */
 | 
						|
struct timeval ns_to_timeval(const s64 nsec)
 | 
						|
{
 | 
						|
	struct timespec ts = ns_to_timespec(nsec);
 | 
						|
	struct timeval tv;
 | 
						|
 | 
						|
	tv.tv_sec = ts.tv_sec;
 | 
						|
	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
 | 
						|
 | 
						|
	return tv;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ns_to_timeval);
 | 
						|
 | 
						|
/**
 | 
						|
 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 | 
						|
 *
 | 
						|
 * @ts:		pointer to timespec variable to be set
 | 
						|
 * @sec:	seconds to set
 | 
						|
 * @nsec:	nanoseconds to set
 | 
						|
 *
 | 
						|
 * Set seconds and nanoseconds field of a timespec variable and
 | 
						|
 * normalize to the timespec storage format
 | 
						|
 *
 | 
						|
 * Note: The tv_nsec part is always in the range of
 | 
						|
 *	0 <= tv_nsec < NSEC_PER_SEC
 | 
						|
 * For negative values only the tv_sec field is negative !
 | 
						|
 */
 | 
						|
void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
 | 
						|
{
 | 
						|
	while (nsec >= NSEC_PER_SEC) {
 | 
						|
		/*
 | 
						|
		 * The following asm() prevents the compiler from
 | 
						|
		 * optimising this loop into a modulo operation. See
 | 
						|
		 * also __iter_div_u64_rem() in include/linux/time.h
 | 
						|
		 */
 | 
						|
		asm("" : "+rm"(nsec));
 | 
						|
		nsec -= NSEC_PER_SEC;
 | 
						|
		++sec;
 | 
						|
	}
 | 
						|
	while (nsec < 0) {
 | 
						|
		asm("" : "+rm"(nsec));
 | 
						|
		nsec += NSEC_PER_SEC;
 | 
						|
		--sec;
 | 
						|
	}
 | 
						|
	ts->tv_sec = sec;
 | 
						|
	ts->tv_nsec = nsec;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(set_normalized_timespec64);
 | 
						|
 | 
						|
/**
 | 
						|
 * ns_to_timespec64 - Convert nanoseconds to timespec64
 | 
						|
 * @nsec:       the nanoseconds value to be converted
 | 
						|
 *
 | 
						|
 * Returns the timespec64 representation of the nsec parameter.
 | 
						|
 */
 | 
						|
struct timespec64 ns_to_timespec64(const s64 nsec)
 | 
						|
{
 | 
						|
	struct timespec64 ts;
 | 
						|
	s32 rem;
 | 
						|
 | 
						|
	if (!nsec)
 | 
						|
		return (struct timespec64) {0, 0};
 | 
						|
 | 
						|
	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
 | 
						|
	if (unlikely(rem < 0)) {
 | 
						|
		ts.tv_sec--;
 | 
						|
		rem += NSEC_PER_SEC;
 | 
						|
	}
 | 
						|
	ts.tv_nsec = rem;
 | 
						|
 | 
						|
	return ts;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(ns_to_timespec64);
 | 
						|
 | 
						|
/**
 | 
						|
 * msecs_to_jiffies: - convert milliseconds to jiffies
 | 
						|
 * @m:	time in milliseconds
 | 
						|
 *
 | 
						|
 * conversion is done as follows:
 | 
						|
 *
 | 
						|
 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 | 
						|
 *
 | 
						|
 * - 'too large' values [that would result in larger than
 | 
						|
 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 | 
						|
 *
 | 
						|
 * - all other values are converted to jiffies by either multiplying
 | 
						|
 *   the input value by a factor or dividing it with a factor and
 | 
						|
 *   handling any 32-bit overflows.
 | 
						|
 *   for the details see __msecs_to_jiffies()
 | 
						|
 *
 | 
						|
 * msecs_to_jiffies() checks for the passed in value being a constant
 | 
						|
 * via __builtin_constant_p() allowing gcc to eliminate most of the
 | 
						|
 * code, __msecs_to_jiffies() is called if the value passed does not
 | 
						|
 * allow constant folding and the actual conversion must be done at
 | 
						|
 * runtime.
 | 
						|
 * the _msecs_to_jiffies helpers are the HZ dependent conversion
 | 
						|
 * routines found in include/linux/jiffies.h
 | 
						|
 */
 | 
						|
unsigned long __msecs_to_jiffies(const unsigned int m)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Negative value, means infinite timeout:
 | 
						|
	 */
 | 
						|
	if ((int)m < 0)
 | 
						|
		return MAX_JIFFY_OFFSET;
 | 
						|
	return _msecs_to_jiffies(m);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__msecs_to_jiffies);
 | 
						|
 | 
						|
unsigned long __usecs_to_jiffies(const unsigned int u)
 | 
						|
{
 | 
						|
	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 | 
						|
		return MAX_JIFFY_OFFSET;
 | 
						|
	return _usecs_to_jiffies(u);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__usecs_to_jiffies);
 | 
						|
 | 
						|
/*
 | 
						|
 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 | 
						|
 * that a remainder subtract here would not do the right thing as the
 | 
						|
 * resolution values don't fall on second boundries.  I.e. the line:
 | 
						|
 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 | 
						|
 * Note that due to the small error in the multiplier here, this
 | 
						|
 * rounding is incorrect for sufficiently large values of tv_nsec, but
 | 
						|
 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
 | 
						|
 * OK.
 | 
						|
 *
 | 
						|
 * Rather, we just shift the bits off the right.
 | 
						|
 *
 | 
						|
 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 | 
						|
 * value to a scaled second value.
 | 
						|
 */
 | 
						|
static unsigned long
 | 
						|
__timespec64_to_jiffies(u64 sec, long nsec)
 | 
						|
{
 | 
						|
	nsec = nsec + TICK_NSEC - 1;
 | 
						|
 | 
						|
	if (sec >= MAX_SEC_IN_JIFFIES){
 | 
						|
		sec = MAX_SEC_IN_JIFFIES;
 | 
						|
		nsec = 0;
 | 
						|
	}
 | 
						|
	return ((sec * SEC_CONVERSION) +
 | 
						|
		(((u64)nsec * NSEC_CONVERSION) >>
 | 
						|
		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long
 | 
						|
__timespec_to_jiffies(unsigned long sec, long nsec)
 | 
						|
{
 | 
						|
	return __timespec64_to_jiffies((u64)sec, nsec);
 | 
						|
}
 | 
						|
 | 
						|
unsigned long
 | 
						|
timespec64_to_jiffies(const struct timespec64 *value)
 | 
						|
{
 | 
						|
	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(timespec64_to_jiffies);
 | 
						|
 | 
						|
void
 | 
						|
jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Convert jiffies to nanoseconds and separate with
 | 
						|
	 * one divide.
 | 
						|
	 */
 | 
						|
	u32 rem;
 | 
						|
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 | 
						|
				    NSEC_PER_SEC, &rem);
 | 
						|
	value->tv_nsec = rem;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(jiffies_to_timespec64);
 | 
						|
 | 
						|
/*
 | 
						|
 * We could use a similar algorithm to timespec_to_jiffies (with a
 | 
						|
 * different multiplier for usec instead of nsec). But this has a
 | 
						|
 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
 | 
						|
 * usec value, since it's not necessarily integral.
 | 
						|
 *
 | 
						|
 * We could instead round in the intermediate scaled representation
 | 
						|
 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
 | 
						|
 * perilous: the scaling introduces a small positive error, which
 | 
						|
 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
 | 
						|
 * units to the intermediate before shifting) leads to accidental
 | 
						|
 * overflow and overestimates.
 | 
						|
 *
 | 
						|
 * At the cost of one additional multiplication by a constant, just
 | 
						|
 * use the timespec implementation.
 | 
						|
 */
 | 
						|
unsigned long
 | 
						|
timeval_to_jiffies(const struct timeval *value)
 | 
						|
{
 | 
						|
	return __timespec_to_jiffies(value->tv_sec,
 | 
						|
				     value->tv_usec * NSEC_PER_USEC);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(timeval_to_jiffies);
 | 
						|
 | 
						|
void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * Convert jiffies to nanoseconds and separate with
 | 
						|
	 * one divide.
 | 
						|
	 */
 | 
						|
	u32 rem;
 | 
						|
 | 
						|
	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
 | 
						|
				    NSEC_PER_SEC, &rem);
 | 
						|
	value->tv_usec = rem / NSEC_PER_USEC;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(jiffies_to_timeval);
 | 
						|
 | 
						|
/*
 | 
						|
 * Convert jiffies/jiffies_64 to clock_t and back.
 | 
						|
 */
 | 
						|
clock_t jiffies_to_clock_t(unsigned long x)
 | 
						|
{
 | 
						|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 | 
						|
# if HZ < USER_HZ
 | 
						|
	return x * (USER_HZ / HZ);
 | 
						|
# else
 | 
						|
	return x / (HZ / USER_HZ);
 | 
						|
# endif
 | 
						|
#else
 | 
						|
	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(jiffies_to_clock_t);
 | 
						|
 | 
						|
unsigned long clock_t_to_jiffies(unsigned long x)
 | 
						|
{
 | 
						|
#if (HZ % USER_HZ)==0
 | 
						|
	if (x >= ~0UL / (HZ / USER_HZ))
 | 
						|
		return ~0UL;
 | 
						|
	return x * (HZ / USER_HZ);
 | 
						|
#else
 | 
						|
	/* Don't worry about loss of precision here .. */
 | 
						|
	if (x >= ~0UL / HZ * USER_HZ)
 | 
						|
		return ~0UL;
 | 
						|
 | 
						|
	/* .. but do try to contain it here */
 | 
						|
	return div_u64((u64)x * HZ, USER_HZ);
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(clock_t_to_jiffies);
 | 
						|
 | 
						|
u64 jiffies_64_to_clock_t(u64 x)
 | 
						|
{
 | 
						|
#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 | 
						|
# if HZ < USER_HZ
 | 
						|
	x = div_u64(x * USER_HZ, HZ);
 | 
						|
# elif HZ > USER_HZ
 | 
						|
	x = div_u64(x, HZ / USER_HZ);
 | 
						|
# else
 | 
						|
	/* Nothing to do */
 | 
						|
# endif
 | 
						|
#else
 | 
						|
	/*
 | 
						|
	 * There are better ways that don't overflow early,
 | 
						|
	 * but even this doesn't overflow in hundreds of years
 | 
						|
	 * in 64 bits, so..
 | 
						|
	 */
 | 
						|
	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
 | 
						|
#endif
 | 
						|
	return x;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(jiffies_64_to_clock_t);
 | 
						|
 | 
						|
u64 nsec_to_clock_t(u64 x)
 | 
						|
{
 | 
						|
#if (NSEC_PER_SEC % USER_HZ) == 0
 | 
						|
	return div_u64(x, NSEC_PER_SEC / USER_HZ);
 | 
						|
#elif (USER_HZ % 512) == 0
 | 
						|
	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
 | 
						|
#else
 | 
						|
	/*
 | 
						|
         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 | 
						|
         * overflow after 64.99 years.
 | 
						|
         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 | 
						|
         */
 | 
						|
	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
u64 jiffies64_to_nsecs(u64 j)
 | 
						|
{
 | 
						|
#if !(NSEC_PER_SEC % HZ)
 | 
						|
	return (NSEC_PER_SEC / HZ) * j;
 | 
						|
# else
 | 
						|
	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(jiffies64_to_nsecs);
 | 
						|
 | 
						|
/**
 | 
						|
 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
 | 
						|
 *
 | 
						|
 * @n:	nsecs in u64
 | 
						|
 *
 | 
						|
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 | 
						|
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 | 
						|
 * for scheduler, not for use in device drivers to calculate timeout value.
 | 
						|
 *
 | 
						|
 * note:
 | 
						|
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 | 
						|
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 | 
						|
 */
 | 
						|
u64 nsecs_to_jiffies64(u64 n)
 | 
						|
{
 | 
						|
#if (NSEC_PER_SEC % HZ) == 0
 | 
						|
	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
 | 
						|
	return div_u64(n, NSEC_PER_SEC / HZ);
 | 
						|
#elif (HZ % 512) == 0
 | 
						|
	/* overflow after 292 years if HZ = 1024 */
 | 
						|
	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
 | 
						|
#else
 | 
						|
	/*
 | 
						|
	 * Generic case - optimized for cases where HZ is a multiple of 3.
 | 
						|
	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
 | 
						|
	 */
 | 
						|
	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
 | 
						|
#endif
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(nsecs_to_jiffies64);
 | 
						|
 | 
						|
/**
 | 
						|
 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
 | 
						|
 *
 | 
						|
 * @n:	nsecs in u64
 | 
						|
 *
 | 
						|
 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
 | 
						|
 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
 | 
						|
 * for scheduler, not for use in device drivers to calculate timeout value.
 | 
						|
 *
 | 
						|
 * note:
 | 
						|
 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
 | 
						|
 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
 | 
						|
 */
 | 
						|
unsigned long nsecs_to_jiffies(u64 n)
 | 
						|
{
 | 
						|
	return (unsigned long)nsecs_to_jiffies64(n);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
 | 
						|
 | 
						|
/*
 | 
						|
 * Add two timespec64 values and do a safety check for overflow.
 | 
						|
 * It's assumed that both values are valid (>= 0).
 | 
						|
 * And, each timespec64 is in normalized form.
 | 
						|
 */
 | 
						|
struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
 | 
						|
				const struct timespec64 rhs)
 | 
						|
{
 | 
						|
	struct timespec64 res;
 | 
						|
 | 
						|
	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
 | 
						|
			lhs.tv_nsec + rhs.tv_nsec);
 | 
						|
 | 
						|
	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
 | 
						|
		res.tv_sec = TIME64_MAX;
 | 
						|
		res.tv_nsec = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	return res;
 | 
						|
}
 | 
						|
 | 
						|
int get_timespec64(struct timespec64 *ts,
 | 
						|
		   const struct timespec __user *uts)
 | 
						|
{
 | 
						|
	struct timespec kts;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = copy_from_user(&kts, uts, sizeof(kts));
 | 
						|
	if (ret)
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	ts->tv_sec = kts.tv_sec;
 | 
						|
	ts->tv_nsec = kts.tv_nsec;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_timespec64);
 | 
						|
 | 
						|
int put_timespec64(const struct timespec64 *ts,
 | 
						|
		   struct timespec __user *uts)
 | 
						|
{
 | 
						|
	struct timespec kts = {
 | 
						|
		.tv_sec = ts->tv_sec,
 | 
						|
		.tv_nsec = ts->tv_nsec
 | 
						|
	};
 | 
						|
	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(put_timespec64);
 | 
						|
 | 
						|
int get_itimerspec64(struct itimerspec64 *it,
 | 
						|
			const struct itimerspec __user *uit)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = get_timespec64(&it->it_interval, &uit->it_interval);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = get_timespec64(&it->it_value, &uit->it_value);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_itimerspec64);
 | 
						|
 | 
						|
int put_itimerspec64(const struct itimerspec64 *it,
 | 
						|
			struct itimerspec __user *uit)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = put_timespec64(&it->it_interval, &uit->it_interval);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	ret = put_timespec64(&it->it_value, &uit->it_value);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(put_itimerspec64);
 |