mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	As of d4d1fc61eb (ia64: Update fsyscall gettime to use modern
vsyscall_update)the last user of CONFIG_GENERIC_TIME_VSYSCALL_OLD
have been updated, the legacy support for old-style vsyscall
implementations can be removed from the timekeeping code.
(Thanks again to Tony Luck for helping remove the last user!)
[jstultz: Commit message rework]
Signed-off-by: Miroslav Lichvar <mlichvar@redhat.com>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Stephen Boyd <stephen.boyd@linaro.org>
Link: https://lkml.kernel.org/r/1510613491-16695-1-git-send-email-john.stultz@linaro.org
		
	
			
		
			
				
	
	
		
			2429 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2429 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  linux/kernel/time/timekeeping.c
 | 
						|
 *
 | 
						|
 *  Kernel timekeeping code and accessor functions
 | 
						|
 *
 | 
						|
 *  This code was moved from linux/kernel/timer.c.
 | 
						|
 *  Please see that file for copyright and history logs.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/timekeeper_internal.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/percpu.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/nmi.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/sched/loadavg.h>
 | 
						|
#include <linux/syscore_ops.h>
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/jiffies.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/stop_machine.h>
 | 
						|
#include <linux/pvclock_gtod.h>
 | 
						|
#include <linux/compiler.h>
 | 
						|
 | 
						|
#include "tick-internal.h"
 | 
						|
#include "ntp_internal.h"
 | 
						|
#include "timekeeping_internal.h"
 | 
						|
 | 
						|
#define TK_CLEAR_NTP		(1 << 0)
 | 
						|
#define TK_MIRROR		(1 << 1)
 | 
						|
#define TK_CLOCK_WAS_SET	(1 << 2)
 | 
						|
 | 
						|
/*
 | 
						|
 * The most important data for readout fits into a single 64 byte
 | 
						|
 * cache line.
 | 
						|
 */
 | 
						|
static struct {
 | 
						|
	seqcount_t		seq;
 | 
						|
	struct timekeeper	timekeeper;
 | 
						|
} tk_core ____cacheline_aligned;
 | 
						|
 | 
						|
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
 | 
						|
static struct timekeeper shadow_timekeeper;
 | 
						|
 | 
						|
/**
 | 
						|
 * struct tk_fast - NMI safe timekeeper
 | 
						|
 * @seq:	Sequence counter for protecting updates. The lowest bit
 | 
						|
 *		is the index for the tk_read_base array
 | 
						|
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 | 
						|
 *		@seq.
 | 
						|
 *
 | 
						|
 * See @update_fast_timekeeper() below.
 | 
						|
 */
 | 
						|
struct tk_fast {
 | 
						|
	seqcount_t		seq;
 | 
						|
	struct tk_read_base	base[2];
 | 
						|
};
 | 
						|
 | 
						|
/* Suspend-time cycles value for halted fast timekeeper. */
 | 
						|
static u64 cycles_at_suspend;
 | 
						|
 | 
						|
static u64 dummy_clock_read(struct clocksource *cs)
 | 
						|
{
 | 
						|
	return cycles_at_suspend;
 | 
						|
}
 | 
						|
 | 
						|
static struct clocksource dummy_clock = {
 | 
						|
	.read = dummy_clock_read,
 | 
						|
};
 | 
						|
 | 
						|
static struct tk_fast tk_fast_mono ____cacheline_aligned = {
 | 
						|
	.base[0] = { .clock = &dummy_clock, },
 | 
						|
	.base[1] = { .clock = &dummy_clock, },
 | 
						|
};
 | 
						|
 | 
						|
static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
 | 
						|
	.base[0] = { .clock = &dummy_clock, },
 | 
						|
	.base[1] = { .clock = &dummy_clock, },
 | 
						|
};
 | 
						|
 | 
						|
/* flag for if timekeeping is suspended */
 | 
						|
int __read_mostly timekeeping_suspended;
 | 
						|
 | 
						|
static inline void tk_normalize_xtime(struct timekeeper *tk)
 | 
						|
{
 | 
						|
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
 | 
						|
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 | 
						|
		tk->xtime_sec++;
 | 
						|
	}
 | 
						|
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 | 
						|
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 | 
						|
		tk->raw_sec++;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
 | 
						|
{
 | 
						|
	struct timespec64 ts;
 | 
						|
 | 
						|
	ts.tv_sec = tk->xtime_sec;
 | 
						|
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 | 
						|
	return ts;
 | 
						|
}
 | 
						|
 | 
						|
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 | 
						|
{
 | 
						|
	tk->xtime_sec = ts->tv_sec;
 | 
						|
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 | 
						|
}
 | 
						|
 | 
						|
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 | 
						|
{
 | 
						|
	tk->xtime_sec += ts->tv_sec;
 | 
						|
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 | 
						|
	tk_normalize_xtime(tk);
 | 
						|
}
 | 
						|
 | 
						|
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 | 
						|
{
 | 
						|
	struct timespec64 tmp;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Verify consistency of: offset_real = -wall_to_monotonic
 | 
						|
	 * before modifying anything
 | 
						|
	 */
 | 
						|
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 | 
						|
					-tk->wall_to_monotonic.tv_nsec);
 | 
						|
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 | 
						|
	tk->wall_to_monotonic = wtm;
 | 
						|
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 | 
						|
	tk->offs_real = timespec64_to_ktime(tmp);
 | 
						|
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 | 
						|
}
 | 
						|
 | 
						|
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 | 
						|
{
 | 
						|
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * tk_clock_read - atomic clocksource read() helper
 | 
						|
 *
 | 
						|
 * This helper is necessary to use in the read paths because, while the
 | 
						|
 * seqlock ensures we don't return a bad value while structures are updated,
 | 
						|
 * it doesn't protect from potential crashes. There is the possibility that
 | 
						|
 * the tkr's clocksource may change between the read reference, and the
 | 
						|
 * clock reference passed to the read function.  This can cause crashes if
 | 
						|
 * the wrong clocksource is passed to the wrong read function.
 | 
						|
 * This isn't necessary to use when holding the timekeeper_lock or doing
 | 
						|
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 | 
						|
 * and update logic).
 | 
						|
 */
 | 
						|
static inline u64 tk_clock_read(struct tk_read_base *tkr)
 | 
						|
{
 | 
						|
	struct clocksource *clock = READ_ONCE(tkr->clock);
 | 
						|
 | 
						|
	return clock->read(clock);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_DEBUG_TIMEKEEPING
 | 
						|
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 | 
						|
 | 
						|
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 | 
						|
{
 | 
						|
 | 
						|
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 | 
						|
	const char *name = tk->tkr_mono.clock->name;
 | 
						|
 | 
						|
	if (offset > max_cycles) {
 | 
						|
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 | 
						|
				offset, name, max_cycles);
 | 
						|
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 | 
						|
	} else {
 | 
						|
		if (offset > (max_cycles >> 1)) {
 | 
						|
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 | 
						|
					offset, name, max_cycles >> 1);
 | 
						|
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (tk->underflow_seen) {
 | 
						|
		if (jiffies - tk->last_warning > WARNING_FREQ) {
 | 
						|
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 | 
						|
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 | 
						|
			printk_deferred("         Your kernel is probably still fine.\n");
 | 
						|
			tk->last_warning = jiffies;
 | 
						|
		}
 | 
						|
		tk->underflow_seen = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (tk->overflow_seen) {
 | 
						|
		if (jiffies - tk->last_warning > WARNING_FREQ) {
 | 
						|
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 | 
						|
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 | 
						|
			printk_deferred("         Your kernel is probably still fine.\n");
 | 
						|
			tk->last_warning = jiffies;
 | 
						|
		}
 | 
						|
		tk->overflow_seen = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	u64 now, last, mask, max, delta;
 | 
						|
	unsigned int seq;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Since we're called holding a seqlock, the data may shift
 | 
						|
	 * under us while we're doing the calculation. This can cause
 | 
						|
	 * false positives, since we'd note a problem but throw the
 | 
						|
	 * results away. So nest another seqlock here to atomically
 | 
						|
	 * grab the points we are checking with.
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		now = tk_clock_read(tkr);
 | 
						|
		last = tkr->cycle_last;
 | 
						|
		mask = tkr->mask;
 | 
						|
		max = tkr->clock->max_cycles;
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	delta = clocksource_delta(now, last, mask);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Try to catch underflows by checking if we are seeing small
 | 
						|
	 * mask-relative negative values.
 | 
						|
	 */
 | 
						|
	if (unlikely((~delta & mask) < (mask >> 3))) {
 | 
						|
		tk->underflow_seen = 1;
 | 
						|
		delta = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Cap delta value to the max_cycles values to avoid mult overflows */
 | 
						|
	if (unlikely(delta > max)) {
 | 
						|
		tk->overflow_seen = 1;
 | 
						|
		delta = tkr->clock->max_cycles;
 | 
						|
	}
 | 
						|
 | 
						|
	return delta;
 | 
						|
}
 | 
						|
#else
 | 
						|
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 | 
						|
{
 | 
						|
}
 | 
						|
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
 | 
						|
{
 | 
						|
	u64 cycle_now, delta;
 | 
						|
 | 
						|
	/* read clocksource */
 | 
						|
	cycle_now = tk_clock_read(tkr);
 | 
						|
 | 
						|
	/* calculate the delta since the last update_wall_time */
 | 
						|
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 | 
						|
 | 
						|
	return delta;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * tk_setup_internals - Set up internals to use clocksource clock.
 | 
						|
 *
 | 
						|
 * @tk:		The target timekeeper to setup.
 | 
						|
 * @clock:		Pointer to clocksource.
 | 
						|
 *
 | 
						|
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 | 
						|
 * pair and interval request.
 | 
						|
 *
 | 
						|
 * Unless you're the timekeeping code, you should not be using this!
 | 
						|
 */
 | 
						|
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 | 
						|
{
 | 
						|
	u64 interval;
 | 
						|
	u64 tmp, ntpinterval;
 | 
						|
	struct clocksource *old_clock;
 | 
						|
 | 
						|
	++tk->cs_was_changed_seq;
 | 
						|
	old_clock = tk->tkr_mono.clock;
 | 
						|
	tk->tkr_mono.clock = clock;
 | 
						|
	tk->tkr_mono.mask = clock->mask;
 | 
						|
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 | 
						|
 | 
						|
	tk->tkr_raw.clock = clock;
 | 
						|
	tk->tkr_raw.mask = clock->mask;
 | 
						|
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 | 
						|
 | 
						|
	/* Do the ns -> cycle conversion first, using original mult */
 | 
						|
	tmp = NTP_INTERVAL_LENGTH;
 | 
						|
	tmp <<= clock->shift;
 | 
						|
	ntpinterval = tmp;
 | 
						|
	tmp += clock->mult/2;
 | 
						|
	do_div(tmp, clock->mult);
 | 
						|
	if (tmp == 0)
 | 
						|
		tmp = 1;
 | 
						|
 | 
						|
	interval = (u64) tmp;
 | 
						|
	tk->cycle_interval = interval;
 | 
						|
 | 
						|
	/* Go back from cycles -> shifted ns */
 | 
						|
	tk->xtime_interval = interval * clock->mult;
 | 
						|
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 | 
						|
	tk->raw_interval = interval * clock->mult;
 | 
						|
 | 
						|
	 /* if changing clocks, convert xtime_nsec shift units */
 | 
						|
	if (old_clock) {
 | 
						|
		int shift_change = clock->shift - old_clock->shift;
 | 
						|
		if (shift_change < 0) {
 | 
						|
			tk->tkr_mono.xtime_nsec >>= -shift_change;
 | 
						|
			tk->tkr_raw.xtime_nsec >>= -shift_change;
 | 
						|
		} else {
 | 
						|
			tk->tkr_mono.xtime_nsec <<= shift_change;
 | 
						|
			tk->tkr_raw.xtime_nsec <<= shift_change;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	tk->tkr_mono.shift = clock->shift;
 | 
						|
	tk->tkr_raw.shift = clock->shift;
 | 
						|
 | 
						|
	tk->ntp_error = 0;
 | 
						|
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 | 
						|
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The timekeeper keeps its own mult values for the currently
 | 
						|
	 * active clocksource. These value will be adjusted via NTP
 | 
						|
	 * to counteract clock drifting.
 | 
						|
	 */
 | 
						|
	tk->tkr_mono.mult = clock->mult;
 | 
						|
	tk->tkr_raw.mult = clock->mult;
 | 
						|
	tk->ntp_err_mult = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Timekeeper helper functions. */
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 | 
						|
static u32 default_arch_gettimeoffset(void) { return 0; }
 | 
						|
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 | 
						|
#else
 | 
						|
static inline u32 arch_gettimeoffset(void) { return 0; }
 | 
						|
#endif
 | 
						|
 | 
						|
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
 | 
						|
{
 | 
						|
	u64 nsec;
 | 
						|
 | 
						|
	nsec = delta * tkr->mult + tkr->xtime_nsec;
 | 
						|
	nsec >>= tkr->shift;
 | 
						|
 | 
						|
	/* If arch requires, add in get_arch_timeoffset() */
 | 
						|
	return nsec + arch_gettimeoffset();
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
 | 
						|
{
 | 
						|
	u64 delta;
 | 
						|
 | 
						|
	delta = timekeeping_get_delta(tkr);
 | 
						|
	return timekeeping_delta_to_ns(tkr, delta);
 | 
						|
}
 | 
						|
 | 
						|
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
 | 
						|
{
 | 
						|
	u64 delta;
 | 
						|
 | 
						|
	/* calculate the delta since the last update_wall_time */
 | 
						|
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 | 
						|
	return timekeeping_delta_to_ns(tkr, delta);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 | 
						|
 * @tkr: Timekeeping readout base from which we take the update
 | 
						|
 *
 | 
						|
 * We want to use this from any context including NMI and tracing /
 | 
						|
 * instrumenting the timekeeping code itself.
 | 
						|
 *
 | 
						|
 * Employ the latch technique; see @raw_write_seqcount_latch.
 | 
						|
 *
 | 
						|
 * So if a NMI hits the update of base[0] then it will use base[1]
 | 
						|
 * which is still consistent. In the worst case this can result is a
 | 
						|
 * slightly wrong timestamp (a few nanoseconds). See
 | 
						|
 * @ktime_get_mono_fast_ns.
 | 
						|
 */
 | 
						|
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
 | 
						|
{
 | 
						|
	struct tk_read_base *base = tkf->base;
 | 
						|
 | 
						|
	/* Force readers off to base[1] */
 | 
						|
	raw_write_seqcount_latch(&tkf->seq);
 | 
						|
 | 
						|
	/* Update base[0] */
 | 
						|
	memcpy(base, tkr, sizeof(*base));
 | 
						|
 | 
						|
	/* Force readers back to base[0] */
 | 
						|
	raw_write_seqcount_latch(&tkf->seq);
 | 
						|
 | 
						|
	/* Update base[1] */
 | 
						|
	memcpy(base + 1, base, sizeof(*base));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 | 
						|
 *
 | 
						|
 * This timestamp is not guaranteed to be monotonic across an update.
 | 
						|
 * The timestamp is calculated by:
 | 
						|
 *
 | 
						|
 *	now = base_mono + clock_delta * slope
 | 
						|
 *
 | 
						|
 * So if the update lowers the slope, readers who are forced to the
 | 
						|
 * not yet updated second array are still using the old steeper slope.
 | 
						|
 *
 | 
						|
 * tmono
 | 
						|
 * ^
 | 
						|
 * |    o  n
 | 
						|
 * |   o n
 | 
						|
 * |  u
 | 
						|
 * | o
 | 
						|
 * |o
 | 
						|
 * |12345678---> reader order
 | 
						|
 *
 | 
						|
 * o = old slope
 | 
						|
 * u = update
 | 
						|
 * n = new slope
 | 
						|
 *
 | 
						|
 * So reader 6 will observe time going backwards versus reader 5.
 | 
						|
 *
 | 
						|
 * While other CPUs are likely to be able observe that, the only way
 | 
						|
 * for a CPU local observation is when an NMI hits in the middle of
 | 
						|
 * the update. Timestamps taken from that NMI context might be ahead
 | 
						|
 * of the following timestamps. Callers need to be aware of that and
 | 
						|
 * deal with it.
 | 
						|
 */
 | 
						|
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 | 
						|
{
 | 
						|
	struct tk_read_base *tkr;
 | 
						|
	unsigned int seq;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = raw_read_seqcount_latch(&tkf->seq);
 | 
						|
		tkr = tkf->base + (seq & 0x01);
 | 
						|
		now = ktime_to_ns(tkr->base);
 | 
						|
 | 
						|
		now += timekeeping_delta_to_ns(tkr,
 | 
						|
				clocksource_delta(
 | 
						|
					tk_clock_read(tkr),
 | 
						|
					tkr->cycle_last,
 | 
						|
					tkr->mask));
 | 
						|
	} while (read_seqcount_retry(&tkf->seq, seq));
 | 
						|
 | 
						|
	return now;
 | 
						|
}
 | 
						|
 | 
						|
u64 ktime_get_mono_fast_ns(void)
 | 
						|
{
 | 
						|
	return __ktime_get_fast_ns(&tk_fast_mono);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 | 
						|
 | 
						|
u64 ktime_get_raw_fast_ns(void)
 | 
						|
{
 | 
						|
	return __ktime_get_fast_ns(&tk_fast_raw);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 | 
						|
 *
 | 
						|
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 | 
						|
 * separate timekeeper with updates to monotonic clock and boot offset
 | 
						|
 * protected with seqlocks. This has the following minor side effects:
 | 
						|
 *
 | 
						|
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 | 
						|
 * but before the timekeeper is updated. If this happens, the new boot offset
 | 
						|
 * is added to the old timekeeping making the clock appear to update slightly
 | 
						|
 * earlier:
 | 
						|
 *    CPU 0                                        CPU 1
 | 
						|
 *    timekeeping_inject_sleeptime64()
 | 
						|
 *    __timekeeping_inject_sleeptime(tk, delta);
 | 
						|
 *                                                 timestamp();
 | 
						|
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 | 
						|
 *
 | 
						|
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 | 
						|
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 | 
						|
 * should be a rare occurrence which postprocessing should be able to handle.
 | 
						|
 */
 | 
						|
u64 notrace ktime_get_boot_fast_ns(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
 | 
						|
	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 | 
						|
 */
 | 
						|
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
 | 
						|
{
 | 
						|
	struct tk_read_base *tkr;
 | 
						|
	unsigned int seq;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = raw_read_seqcount_latch(&tkf->seq);
 | 
						|
		tkr = tkf->base + (seq & 0x01);
 | 
						|
		now = ktime_to_ns(tkr->base_real);
 | 
						|
 | 
						|
		now += timekeeping_delta_to_ns(tkr,
 | 
						|
				clocksource_delta(
 | 
						|
					tk_clock_read(tkr),
 | 
						|
					tkr->cycle_last,
 | 
						|
					tkr->mask));
 | 
						|
	} while (read_seqcount_retry(&tkf->seq, seq));
 | 
						|
 | 
						|
	return now;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 | 
						|
 */
 | 
						|
u64 ktime_get_real_fast_ns(void)
 | 
						|
{
 | 
						|
	return __ktime_get_real_fast_ns(&tk_fast_mono);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 | 
						|
 | 
						|
/**
 | 
						|
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 | 
						|
 * @tk: Timekeeper to snapshot.
 | 
						|
 *
 | 
						|
 * It generally is unsafe to access the clocksource after timekeeping has been
 | 
						|
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 | 
						|
 * fast timekeeper's readout base while suspended.  It will return the same
 | 
						|
 * number of cycles every time until timekeeping is resumed at which time the
 | 
						|
 * proper readout base for the fast timekeeper will be restored automatically.
 | 
						|
 */
 | 
						|
static void halt_fast_timekeeper(struct timekeeper *tk)
 | 
						|
{
 | 
						|
	static struct tk_read_base tkr_dummy;
 | 
						|
	struct tk_read_base *tkr = &tk->tkr_mono;
 | 
						|
 | 
						|
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 | 
						|
	cycles_at_suspend = tk_clock_read(tkr);
 | 
						|
	tkr_dummy.clock = &dummy_clock;
 | 
						|
	tkr_dummy.base_real = tkr->base + tk->offs_real;
 | 
						|
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 | 
						|
 | 
						|
	tkr = &tk->tkr_raw;
 | 
						|
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 | 
						|
	tkr_dummy.clock = &dummy_clock;
 | 
						|
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 | 
						|
}
 | 
						|
 | 
						|
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 | 
						|
 | 
						|
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 | 
						|
{
 | 
						|
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 | 
						|
 */
 | 
						|
int pvclock_gtod_register_notifier(struct notifier_block *nb)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 | 
						|
	update_pvclock_gtod(tk, true);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 | 
						|
 | 
						|
/**
 | 
						|
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 | 
						|
 * timedata update listener
 | 
						|
 */
 | 
						|
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 | 
						|
 | 
						|
/*
 | 
						|
 * tk_update_leap_state - helper to update the next_leap_ktime
 | 
						|
 */
 | 
						|
static inline void tk_update_leap_state(struct timekeeper *tk)
 | 
						|
{
 | 
						|
	tk->next_leap_ktime = ntp_get_next_leap();
 | 
						|
	if (tk->next_leap_ktime != KTIME_MAX)
 | 
						|
		/* Convert to monotonic time */
 | 
						|
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Update the ktime_t based scalar nsec members of the timekeeper
 | 
						|
 */
 | 
						|
static inline void tk_update_ktime_data(struct timekeeper *tk)
 | 
						|
{
 | 
						|
	u64 seconds;
 | 
						|
	u32 nsec;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The xtime based monotonic readout is:
 | 
						|
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 | 
						|
	 * The ktime based monotonic readout is:
 | 
						|
	 *	nsec = base_mono + now();
 | 
						|
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 | 
						|
	 */
 | 
						|
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 | 
						|
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 | 
						|
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The sum of the nanoseconds portions of xtime and
 | 
						|
	 * wall_to_monotonic can be greater/equal one second. Take
 | 
						|
	 * this into account before updating tk->ktime_sec.
 | 
						|
	 */
 | 
						|
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 | 
						|
	if (nsec >= NSEC_PER_SEC)
 | 
						|
		seconds++;
 | 
						|
	tk->ktime_sec = seconds;
 | 
						|
 | 
						|
	/* Update the monotonic raw base */
 | 
						|
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 | 
						|
}
 | 
						|
 | 
						|
/* must hold timekeeper_lock */
 | 
						|
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 | 
						|
{
 | 
						|
	if (action & TK_CLEAR_NTP) {
 | 
						|
		tk->ntp_error = 0;
 | 
						|
		ntp_clear();
 | 
						|
	}
 | 
						|
 | 
						|
	tk_update_leap_state(tk);
 | 
						|
	tk_update_ktime_data(tk);
 | 
						|
 | 
						|
	update_vsyscall(tk);
 | 
						|
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 | 
						|
 | 
						|
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 | 
						|
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 | 
						|
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 | 
						|
 | 
						|
	if (action & TK_CLOCK_WAS_SET)
 | 
						|
		tk->clock_was_set_seq++;
 | 
						|
	/*
 | 
						|
	 * The mirroring of the data to the shadow-timekeeper needs
 | 
						|
	 * to happen last here to ensure we don't over-write the
 | 
						|
	 * timekeeper structure on the next update with stale data
 | 
						|
	 */
 | 
						|
	if (action & TK_MIRROR)
 | 
						|
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 | 
						|
		       sizeof(tk_core.timekeeper));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_forward_now - update clock to the current time
 | 
						|
 *
 | 
						|
 * Forward the current clock to update its state since the last call to
 | 
						|
 * update_wall_time(). This is useful before significant clock changes,
 | 
						|
 * as it avoids having to deal with this time offset explicitly.
 | 
						|
 */
 | 
						|
static void timekeeping_forward_now(struct timekeeper *tk)
 | 
						|
{
 | 
						|
	u64 cycle_now, delta;
 | 
						|
 | 
						|
	cycle_now = tk_clock_read(&tk->tkr_mono);
 | 
						|
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 | 
						|
	tk->tkr_mono.cycle_last = cycle_now;
 | 
						|
	tk->tkr_raw.cycle_last  = cycle_now;
 | 
						|
 | 
						|
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 | 
						|
 | 
						|
	/* If arch requires, add in get_arch_timeoffset() */
 | 
						|
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 | 
						|
 | 
						|
 | 
						|
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 | 
						|
 | 
						|
	/* If arch requires, add in get_arch_timeoffset() */
 | 
						|
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
 | 
						|
 | 
						|
	tk_normalize_xtime(tk);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __getnstimeofday64 - Returns the time of day in a timespec64.
 | 
						|
 * @ts:		pointer to the timespec to be set
 | 
						|
 *
 | 
						|
 * Updates the time of day in the timespec.
 | 
						|
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
 | 
						|
 */
 | 
						|
int __getnstimeofday64(struct timespec64 *ts)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long seq;
 | 
						|
	u64 nsecs;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
		ts->tv_sec = tk->xtime_sec;
 | 
						|
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	ts->tv_nsec = 0;
 | 
						|
	timespec64_add_ns(ts, nsecs);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Do not bail out early, in case there were callers still using
 | 
						|
	 * the value, even in the face of the WARN_ON.
 | 
						|
	 */
 | 
						|
	if (unlikely(timekeeping_suspended))
 | 
						|
		return -EAGAIN;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__getnstimeofday64);
 | 
						|
 | 
						|
/**
 | 
						|
 * getnstimeofday64 - Returns the time of day in a timespec64.
 | 
						|
 * @ts:		pointer to the timespec64 to be set
 | 
						|
 *
 | 
						|
 * Returns the time of day in a timespec64 (WARN if suspended).
 | 
						|
 */
 | 
						|
void getnstimeofday64(struct timespec64 *ts)
 | 
						|
{
 | 
						|
	WARN_ON(__getnstimeofday64(ts));
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(getnstimeofday64);
 | 
						|
 | 
						|
ktime_t ktime_get(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned int seq;
 | 
						|
	ktime_t base;
 | 
						|
	u64 nsecs;
 | 
						|
 | 
						|
	WARN_ON(timekeeping_suspended);
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		base = tk->tkr_mono.base;
 | 
						|
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return ktime_add_ns(base, nsecs);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get);
 | 
						|
 | 
						|
u32 ktime_get_resolution_ns(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned int seq;
 | 
						|
	u32 nsecs;
 | 
						|
 | 
						|
	WARN_ON(timekeeping_suspended);
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return nsecs;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 | 
						|
 | 
						|
static ktime_t *offsets[TK_OFFS_MAX] = {
 | 
						|
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
 | 
						|
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
 | 
						|
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
 | 
						|
};
 | 
						|
 | 
						|
ktime_t ktime_get_with_offset(enum tk_offsets offs)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned int seq;
 | 
						|
	ktime_t base, *offset = offsets[offs];
 | 
						|
	u64 nsecs;
 | 
						|
 | 
						|
	WARN_ON(timekeeping_suspended);
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		base = ktime_add(tk->tkr_mono.base, *offset);
 | 
						|
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return ktime_add_ns(base, nsecs);
 | 
						|
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_mono_to_any() - convert mononotic time to any other time
 | 
						|
 * @tmono:	time to convert.
 | 
						|
 * @offs:	which offset to use
 | 
						|
 */
 | 
						|
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 | 
						|
{
 | 
						|
	ktime_t *offset = offsets[offs];
 | 
						|
	unsigned long seq;
 | 
						|
	ktime_t tconv;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		tconv = ktime_add(tmono, *offset);
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return tconv;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 | 
						|
 */
 | 
						|
ktime_t ktime_get_raw(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned int seq;
 | 
						|
	ktime_t base;
 | 
						|
	u64 nsecs;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		base = tk->tkr_raw.base;
 | 
						|
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return ktime_add_ns(base, nsecs);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_raw);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 | 
						|
 * @ts:		pointer to timespec variable
 | 
						|
 *
 | 
						|
 * The function calculates the monotonic clock from the realtime
 | 
						|
 * clock and the wall_to_monotonic offset and stores the result
 | 
						|
 * in normalized timespec64 format in the variable pointed to by @ts.
 | 
						|
 */
 | 
						|
void ktime_get_ts64(struct timespec64 *ts)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	struct timespec64 tomono;
 | 
						|
	unsigned int seq;
 | 
						|
	u64 nsec;
 | 
						|
 | 
						|
	WARN_ON(timekeeping_suspended);
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		ts->tv_sec = tk->xtime_sec;
 | 
						|
		nsec = timekeeping_get_ns(&tk->tkr_mono);
 | 
						|
		tomono = tk->wall_to_monotonic;
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	ts->tv_sec += tomono.tv_sec;
 | 
						|
	ts->tv_nsec = 0;
 | 
						|
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_ts64);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 | 
						|
 *
 | 
						|
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 | 
						|
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 | 
						|
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 | 
						|
 * covers ~136 years of uptime which should be enough to prevent
 | 
						|
 * premature wrap arounds.
 | 
						|
 */
 | 
						|
time64_t ktime_get_seconds(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
 | 
						|
	WARN_ON(timekeeping_suspended);
 | 
						|
	return tk->ktime_sec;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_seconds);
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 | 
						|
 *
 | 
						|
 * Returns the wall clock seconds since 1970. This replaces the
 | 
						|
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 | 
						|
 *
 | 
						|
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 | 
						|
 * 32bit systems the access must be protected with the sequence
 | 
						|
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 | 
						|
 * value.
 | 
						|
 */
 | 
						|
time64_t ktime_get_real_seconds(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	time64_t seconds;
 | 
						|
	unsigned int seq;
 | 
						|
 | 
						|
	if (IS_ENABLED(CONFIG_64BIT))
 | 
						|
		return tk->xtime_sec;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		seconds = tk->xtime_sec;
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return seconds;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 | 
						|
 | 
						|
/**
 | 
						|
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 | 
						|
 * but without the sequence counter protect. This internal function
 | 
						|
 * is called just when timekeeping lock is already held.
 | 
						|
 */
 | 
						|
time64_t __ktime_get_real_seconds(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
 | 
						|
	return tk->xtime_sec;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 | 
						|
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 | 
						|
 */
 | 
						|
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long seq;
 | 
						|
	ktime_t base_raw;
 | 
						|
	ktime_t base_real;
 | 
						|
	u64 nsec_raw;
 | 
						|
	u64 nsec_real;
 | 
						|
	u64 now;
 | 
						|
 | 
						|
	WARN_ON_ONCE(timekeeping_suspended);
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		now = tk_clock_read(&tk->tkr_mono);
 | 
						|
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 | 
						|
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 | 
						|
		base_real = ktime_add(tk->tkr_mono.base,
 | 
						|
				      tk_core.timekeeper.offs_real);
 | 
						|
		base_raw = tk->tkr_raw.base;
 | 
						|
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 | 
						|
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	systime_snapshot->cycles = now;
 | 
						|
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 | 
						|
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 | 
						|
 | 
						|
/* Scale base by mult/div checking for overflow */
 | 
						|
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 | 
						|
{
 | 
						|
	u64 tmp, rem;
 | 
						|
 | 
						|
	tmp = div64_u64_rem(*base, div, &rem);
 | 
						|
 | 
						|
	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
 | 
						|
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
 | 
						|
		return -EOVERFLOW;
 | 
						|
	tmp *= mult;
 | 
						|
	rem *= mult;
 | 
						|
 | 
						|
	do_div(rem, div);
 | 
						|
	*base = tmp + rem;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 | 
						|
 * @history:			Snapshot representing start of history
 | 
						|
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 | 
						|
 * @total_history_cycles:	Total history length in cycles
 | 
						|
 * @discontinuity:		True indicates clock was set on history period
 | 
						|
 * @ts:				Cross timestamp that should be adjusted using
 | 
						|
 *	partial/total ratio
 | 
						|
 *
 | 
						|
 * Helper function used by get_device_system_crosststamp() to correct the
 | 
						|
 * crosstimestamp corresponding to the start of the current interval to the
 | 
						|
 * system counter value (timestamp point) provided by the driver. The
 | 
						|
 * total_history_* quantities are the total history starting at the provided
 | 
						|
 * reference point and ending at the start of the current interval. The cycle
 | 
						|
 * count between the driver timestamp point and the start of the current
 | 
						|
 * interval is partial_history_cycles.
 | 
						|
 */
 | 
						|
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
 | 
						|
					 u64 partial_history_cycles,
 | 
						|
					 u64 total_history_cycles,
 | 
						|
					 bool discontinuity,
 | 
						|
					 struct system_device_crosststamp *ts)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	u64 corr_raw, corr_real;
 | 
						|
	bool interp_forward;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	if (total_history_cycles == 0 || partial_history_cycles == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* Interpolate shortest distance from beginning or end of history */
 | 
						|
	interp_forward = partial_history_cycles > total_history_cycles / 2;
 | 
						|
	partial_history_cycles = interp_forward ?
 | 
						|
		total_history_cycles - partial_history_cycles :
 | 
						|
		partial_history_cycles;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Scale the monotonic raw time delta by:
 | 
						|
	 *	partial_history_cycles / total_history_cycles
 | 
						|
	 */
 | 
						|
	corr_raw = (u64)ktime_to_ns(
 | 
						|
		ktime_sub(ts->sys_monoraw, history->raw));
 | 
						|
	ret = scale64_check_overflow(partial_history_cycles,
 | 
						|
				     total_history_cycles, &corr_raw);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If there is a discontinuity in the history, scale monotonic raw
 | 
						|
	 *	correction by:
 | 
						|
	 *	mult(real)/mult(raw) yielding the realtime correction
 | 
						|
	 * Otherwise, calculate the realtime correction similar to monotonic
 | 
						|
	 *	raw calculation
 | 
						|
	 */
 | 
						|
	if (discontinuity) {
 | 
						|
		corr_real = mul_u64_u32_div
 | 
						|
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
 | 
						|
	} else {
 | 
						|
		corr_real = (u64)ktime_to_ns(
 | 
						|
			ktime_sub(ts->sys_realtime, history->real));
 | 
						|
		ret = scale64_check_overflow(partial_history_cycles,
 | 
						|
					     total_history_cycles, &corr_real);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Fixup monotonic raw and real time time values */
 | 
						|
	if (interp_forward) {
 | 
						|
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
 | 
						|
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
 | 
						|
	} else {
 | 
						|
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
 | 
						|
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * cycle_between - true if test occurs chronologically between before and after
 | 
						|
 */
 | 
						|
static bool cycle_between(u64 before, u64 test, u64 after)
 | 
						|
{
 | 
						|
	if (test > before && test < after)
 | 
						|
		return true;
 | 
						|
	if (test < before && before > after)
 | 
						|
		return true;
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
 | 
						|
 * @get_time_fn:	Callback to get simultaneous device time and
 | 
						|
 *	system counter from the device driver
 | 
						|
 * @ctx:		Context passed to get_time_fn()
 | 
						|
 * @history_begin:	Historical reference point used to interpolate system
 | 
						|
 *	time when counter provided by the driver is before the current interval
 | 
						|
 * @xtstamp:		Receives simultaneously captured system and device time
 | 
						|
 *
 | 
						|
 * Reads a timestamp from a device and correlates it to system time
 | 
						|
 */
 | 
						|
int get_device_system_crosststamp(int (*get_time_fn)
 | 
						|
				  (ktime_t *device_time,
 | 
						|
				   struct system_counterval_t *sys_counterval,
 | 
						|
				   void *ctx),
 | 
						|
				  void *ctx,
 | 
						|
				  struct system_time_snapshot *history_begin,
 | 
						|
				  struct system_device_crosststamp *xtstamp)
 | 
						|
{
 | 
						|
	struct system_counterval_t system_counterval;
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	u64 cycles, now, interval_start;
 | 
						|
	unsigned int clock_was_set_seq = 0;
 | 
						|
	ktime_t base_real, base_raw;
 | 
						|
	u64 nsec_real, nsec_raw;
 | 
						|
	u8 cs_was_changed_seq;
 | 
						|
	unsigned long seq;
 | 
						|
	bool do_interp;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		/*
 | 
						|
		 * Try to synchronously capture device time and a system
 | 
						|
		 * counter value calling back into the device driver
 | 
						|
		 */
 | 
						|
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Verify that the clocksource associated with the captured
 | 
						|
		 * system counter value is the same as the currently installed
 | 
						|
		 * timekeeper clocksource
 | 
						|
		 */
 | 
						|
		if (tk->tkr_mono.clock != system_counterval.cs)
 | 
						|
			return -ENODEV;
 | 
						|
		cycles = system_counterval.cycles;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check whether the system counter value provided by the
 | 
						|
		 * device driver is on the current timekeeping interval.
 | 
						|
		 */
 | 
						|
		now = tk_clock_read(&tk->tkr_mono);
 | 
						|
		interval_start = tk->tkr_mono.cycle_last;
 | 
						|
		if (!cycle_between(interval_start, cycles, now)) {
 | 
						|
			clock_was_set_seq = tk->clock_was_set_seq;
 | 
						|
			cs_was_changed_seq = tk->cs_was_changed_seq;
 | 
						|
			cycles = interval_start;
 | 
						|
			do_interp = true;
 | 
						|
		} else {
 | 
						|
			do_interp = false;
 | 
						|
		}
 | 
						|
 | 
						|
		base_real = ktime_add(tk->tkr_mono.base,
 | 
						|
				      tk_core.timekeeper.offs_real);
 | 
						|
		base_raw = tk->tkr_raw.base;
 | 
						|
 | 
						|
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
 | 
						|
						     system_counterval.cycles);
 | 
						|
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
 | 
						|
						    system_counterval.cycles);
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
 | 
						|
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Interpolate if necessary, adjusting back from the start of the
 | 
						|
	 * current interval
 | 
						|
	 */
 | 
						|
	if (do_interp) {
 | 
						|
		u64 partial_history_cycles, total_history_cycles;
 | 
						|
		bool discontinuity;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Check that the counter value occurs after the provided
 | 
						|
		 * history reference and that the history doesn't cross a
 | 
						|
		 * clocksource change
 | 
						|
		 */
 | 
						|
		if (!history_begin ||
 | 
						|
		    !cycle_between(history_begin->cycles,
 | 
						|
				   system_counterval.cycles, cycles) ||
 | 
						|
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
 | 
						|
			return -EINVAL;
 | 
						|
		partial_history_cycles = cycles - system_counterval.cycles;
 | 
						|
		total_history_cycles = cycles - history_begin->cycles;
 | 
						|
		discontinuity =
 | 
						|
			history_begin->clock_was_set_seq != clock_was_set_seq;
 | 
						|
 | 
						|
		ret = adjust_historical_crosststamp(history_begin,
 | 
						|
						    partial_history_cycles,
 | 
						|
						    total_history_cycles,
 | 
						|
						    discontinuity, xtstamp);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
 | 
						|
 | 
						|
/**
 | 
						|
 * do_gettimeofday - Returns the time of day in a timeval
 | 
						|
 * @tv:		pointer to the timeval to be set
 | 
						|
 *
 | 
						|
 * NOTE: Users should be converted to using getnstimeofday()
 | 
						|
 */
 | 
						|
void do_gettimeofday(struct timeval *tv)
 | 
						|
{
 | 
						|
	struct timespec64 now;
 | 
						|
 | 
						|
	getnstimeofday64(&now);
 | 
						|
	tv->tv_sec = now.tv_sec;
 | 
						|
	tv->tv_usec = now.tv_nsec/1000;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(do_gettimeofday);
 | 
						|
 | 
						|
/**
 | 
						|
 * do_settimeofday64 - Sets the time of day.
 | 
						|
 * @ts:     pointer to the timespec64 variable containing the new time
 | 
						|
 *
 | 
						|
 * Sets the time of day to the new time and update NTP and notify hrtimers
 | 
						|
 */
 | 
						|
int do_settimeofday64(const struct timespec64 *ts)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	struct timespec64 ts_delta, xt;
 | 
						|
	unsigned long flags;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (!timespec64_valid_strict(ts))
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
	timekeeping_forward_now(tk);
 | 
						|
 | 
						|
	xt = tk_xtime(tk);
 | 
						|
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
 | 
						|
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
 | 
						|
 | 
						|
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
 | 
						|
 | 
						|
	tk_set_xtime(tk, ts);
 | 
						|
out:
 | 
						|
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | 
						|
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	/* signal hrtimers about time change */
 | 
						|
	clock_was_set();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(do_settimeofday64);
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 | 
						|
 * @tv:		pointer to the timespec variable containing the offset
 | 
						|
 *
 | 
						|
 * Adds or subtracts an offset value from the current time.
 | 
						|
 */
 | 
						|
static int timekeeping_inject_offset(struct timespec64 *ts)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long flags;
 | 
						|
	struct timespec64 tmp;
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
	timekeeping_forward_now(tk);
 | 
						|
 | 
						|
	/* Make sure the proposed value is valid */
 | 
						|
	tmp = timespec64_add(tk_xtime(tk), *ts);
 | 
						|
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
 | 
						|
	    !timespec64_valid_strict(&tmp)) {
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	tk_xtime_add(tk, ts);
 | 
						|
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
 | 
						|
 | 
						|
error: /* even if we error out, we forwarded the time, so call update */
 | 
						|
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | 
						|
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	/* signal hrtimers about time change */
 | 
						|
	clock_was_set();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Indicates if there is an offset between the system clock and the hardware
 | 
						|
 * clock/persistent clock/rtc.
 | 
						|
 */
 | 
						|
int persistent_clock_is_local;
 | 
						|
 | 
						|
/*
 | 
						|
 * Adjust the time obtained from the CMOS to be UTC time instead of
 | 
						|
 * local time.
 | 
						|
 *
 | 
						|
 * This is ugly, but preferable to the alternatives.  Otherwise we
 | 
						|
 * would either need to write a program to do it in /etc/rc (and risk
 | 
						|
 * confusion if the program gets run more than once; it would also be
 | 
						|
 * hard to make the program warp the clock precisely n hours)  or
 | 
						|
 * compile in the timezone information into the kernel.  Bad, bad....
 | 
						|
 *
 | 
						|
 *						- TYT, 1992-01-01
 | 
						|
 *
 | 
						|
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 | 
						|
 * as real UNIX machines always do it. This avoids all headaches about
 | 
						|
 * daylight saving times and warping kernel clocks.
 | 
						|
 */
 | 
						|
void timekeeping_warp_clock(void)
 | 
						|
{
 | 
						|
	if (sys_tz.tz_minuteswest != 0) {
 | 
						|
		struct timespec64 adjust;
 | 
						|
 | 
						|
		persistent_clock_is_local = 1;
 | 
						|
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
 | 
						|
		adjust.tv_nsec = 0;
 | 
						|
		timekeeping_inject_offset(&adjust);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
 | 
						|
{
 | 
						|
	tk->tai_offset = tai_offset;
 | 
						|
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * change_clocksource - Swaps clocksources if a new one is available
 | 
						|
 *
 | 
						|
 * Accumulates current time interval and initializes new clocksource
 | 
						|
 */
 | 
						|
static int change_clocksource(void *data)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	struct clocksource *new, *old;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	new = (struct clocksource *) data;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
	timekeeping_forward_now(tk);
 | 
						|
	/*
 | 
						|
	 * If the cs is in module, get a module reference. Succeeds
 | 
						|
	 * for built-in code (owner == NULL) as well.
 | 
						|
	 */
 | 
						|
	if (try_module_get(new->owner)) {
 | 
						|
		if (!new->enable || new->enable(new) == 0) {
 | 
						|
			old = tk->tkr_mono.clock;
 | 
						|
			tk_setup_internals(tk, new);
 | 
						|
			if (old->disable)
 | 
						|
				old->disable(old);
 | 
						|
			module_put(old->owner);
 | 
						|
		} else {
 | 
						|
			module_put(new->owner);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | 
						|
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_notify - Install a new clock source
 | 
						|
 * @clock:		pointer to the clock source
 | 
						|
 *
 | 
						|
 * This function is called from clocksource.c after a new, better clock
 | 
						|
 * source has been registered. The caller holds the clocksource_mutex.
 | 
						|
 */
 | 
						|
int timekeeping_notify(struct clocksource *clock)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
 | 
						|
	if (tk->tkr_mono.clock == clock)
 | 
						|
		return 0;
 | 
						|
	stop_machine(change_clocksource, clock, NULL);
 | 
						|
	tick_clock_notify();
 | 
						|
	return tk->tkr_mono.clock == clock ? 0 : -1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 | 
						|
 * @ts:		pointer to the timespec64 to be set
 | 
						|
 *
 | 
						|
 * Returns the raw monotonic time (completely un-modified by ntp)
 | 
						|
 */
 | 
						|
void getrawmonotonic64(struct timespec64 *ts)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long seq;
 | 
						|
	u64 nsecs;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
		ts->tv_sec = tk->raw_sec;
 | 
						|
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	ts->tv_nsec = 0;
 | 
						|
	timespec64_add_ns(ts, nsecs);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(getrawmonotonic64);
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
 | 
						|
 */
 | 
						|
int timekeeping_valid_for_hres(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long seq;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 | 
						|
 */
 | 
						|
u64 timekeeping_max_deferment(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long seq;
 | 
						|
	u64 ret;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
		ret = tk->tkr_mono.clock->max_idle_ns;
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * read_persistent_clock -  Return time from the persistent clock.
 | 
						|
 *
 | 
						|
 * Weak dummy function for arches that do not yet support it.
 | 
						|
 * Reads the time from the battery backed persistent clock.
 | 
						|
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 | 
						|
 *
 | 
						|
 *  XXX - Do be sure to remove it once all arches implement it.
 | 
						|
 */
 | 
						|
void __weak read_persistent_clock(struct timespec *ts)
 | 
						|
{
 | 
						|
	ts->tv_sec = 0;
 | 
						|
	ts->tv_nsec = 0;
 | 
						|
}
 | 
						|
 | 
						|
void __weak read_persistent_clock64(struct timespec64 *ts64)
 | 
						|
{
 | 
						|
	struct timespec ts;
 | 
						|
 | 
						|
	read_persistent_clock(&ts);
 | 
						|
	*ts64 = timespec_to_timespec64(ts);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * read_boot_clock64 -  Return time of the system start.
 | 
						|
 *
 | 
						|
 * Weak dummy function for arches that do not yet support it.
 | 
						|
 * Function to read the exact time the system has been started.
 | 
						|
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
 | 
						|
 *
 | 
						|
 *  XXX - Do be sure to remove it once all arches implement it.
 | 
						|
 */
 | 
						|
void __weak read_boot_clock64(struct timespec64 *ts)
 | 
						|
{
 | 
						|
	ts->tv_sec = 0;
 | 
						|
	ts->tv_nsec = 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Flag for if timekeeping_resume() has injected sleeptime */
 | 
						|
static bool sleeptime_injected;
 | 
						|
 | 
						|
/* Flag for if there is a persistent clock on this platform */
 | 
						|
static bool persistent_clock_exists;
 | 
						|
 | 
						|
/*
 | 
						|
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 | 
						|
 */
 | 
						|
void __init timekeeping_init(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	struct clocksource *clock;
 | 
						|
	unsigned long flags;
 | 
						|
	struct timespec64 now, boot, tmp;
 | 
						|
 | 
						|
	read_persistent_clock64(&now);
 | 
						|
	if (!timespec64_valid_strict(&now)) {
 | 
						|
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
 | 
						|
			"         Check your CMOS/BIOS settings.\n");
 | 
						|
		now.tv_sec = 0;
 | 
						|
		now.tv_nsec = 0;
 | 
						|
	} else if (now.tv_sec || now.tv_nsec)
 | 
						|
		persistent_clock_exists = true;
 | 
						|
 | 
						|
	read_boot_clock64(&boot);
 | 
						|
	if (!timespec64_valid_strict(&boot)) {
 | 
						|
		pr_warn("WARNING: Boot clock returned invalid value!\n"
 | 
						|
			"         Check your CMOS/BIOS settings.\n");
 | 
						|
		boot.tv_sec = 0;
 | 
						|
		boot.tv_nsec = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
	ntp_init();
 | 
						|
 | 
						|
	clock = clocksource_default_clock();
 | 
						|
	if (clock->enable)
 | 
						|
		clock->enable(clock);
 | 
						|
	tk_setup_internals(tk, clock);
 | 
						|
 | 
						|
	tk_set_xtime(tk, &now);
 | 
						|
	tk->raw_sec = 0;
 | 
						|
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
 | 
						|
		boot = tk_xtime(tk);
 | 
						|
 | 
						|
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
 | 
						|
	tk_set_wall_to_mono(tk, tmp);
 | 
						|
 | 
						|
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | 
						|
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
}
 | 
						|
 | 
						|
/* time in seconds when suspend began for persistent clock */
 | 
						|
static struct timespec64 timekeeping_suspend_time;
 | 
						|
 | 
						|
/**
 | 
						|
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 | 
						|
 * @delta: pointer to a timespec delta value
 | 
						|
 *
 | 
						|
 * Takes a timespec offset measuring a suspend interval and properly
 | 
						|
 * adds the sleep offset to the timekeeping variables.
 | 
						|
 */
 | 
						|
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
 | 
						|
					   struct timespec64 *delta)
 | 
						|
{
 | 
						|
	if (!timespec64_valid_strict(delta)) {
 | 
						|
		printk_deferred(KERN_WARNING
 | 
						|
				"__timekeeping_inject_sleeptime: Invalid "
 | 
						|
				"sleep delta value!\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	tk_xtime_add(tk, delta);
 | 
						|
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
 | 
						|
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
 | 
						|
	tk_debug_account_sleep_time(delta);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
 | 
						|
/**
 | 
						|
 * We have three kinds of time sources to use for sleep time
 | 
						|
 * injection, the preference order is:
 | 
						|
 * 1) non-stop clocksource
 | 
						|
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 | 
						|
 * 3) RTC
 | 
						|
 *
 | 
						|
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 | 
						|
 * If system has neither 1) nor 2), 3) will be used finally.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * If timekeeping has injected sleeptime via either 1) or 2),
 | 
						|
 * 3) becomes needless, so in this case we don't need to call
 | 
						|
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 | 
						|
 * means.
 | 
						|
 */
 | 
						|
bool timekeeping_rtc_skipresume(void)
 | 
						|
{
 | 
						|
	return sleeptime_injected;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * 1) can be determined whether to use or not only when doing
 | 
						|
 * timekeeping_resume() which is invoked after rtc_suspend(),
 | 
						|
 * so we can't skip rtc_suspend() surely if system has 1).
 | 
						|
 *
 | 
						|
 * But if system has 2), 2) will definitely be used, so in this
 | 
						|
 * case we don't need to call rtc_suspend(), and this is what
 | 
						|
 * timekeeping_rtc_skipsuspend() means.
 | 
						|
 */
 | 
						|
bool timekeeping_rtc_skipsuspend(void)
 | 
						|
{
 | 
						|
	return persistent_clock_exists;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 | 
						|
 * @delta: pointer to a timespec64 delta value
 | 
						|
 *
 | 
						|
 * This hook is for architectures that cannot support read_persistent_clock64
 | 
						|
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 | 
						|
 * and also don't have an effective nonstop clocksource.
 | 
						|
 *
 | 
						|
 * This function should only be called by rtc_resume(), and allows
 | 
						|
 * a suspend offset to be injected into the timekeeping values.
 | 
						|
 */
 | 
						|
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
	timekeeping_forward_now(tk);
 | 
						|
 | 
						|
	__timekeeping_inject_sleeptime(tk, delta);
 | 
						|
 | 
						|
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
 | 
						|
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	/* signal hrtimers about time change */
 | 
						|
	clock_was_set();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 | 
						|
 */
 | 
						|
void timekeeping_resume(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	struct clocksource *clock = tk->tkr_mono.clock;
 | 
						|
	unsigned long flags;
 | 
						|
	struct timespec64 ts_new, ts_delta;
 | 
						|
	u64 cycle_now;
 | 
						|
 | 
						|
	sleeptime_injected = false;
 | 
						|
	read_persistent_clock64(&ts_new);
 | 
						|
 | 
						|
	clockevents_resume();
 | 
						|
	clocksource_resume();
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * After system resumes, we need to calculate the suspended time and
 | 
						|
	 * compensate it for the OS time. There are 3 sources that could be
 | 
						|
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
 | 
						|
	 * device.
 | 
						|
	 *
 | 
						|
	 * One specific platform may have 1 or 2 or all of them, and the
 | 
						|
	 * preference will be:
 | 
						|
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
 | 
						|
	 * The less preferred source will only be tried if there is no better
 | 
						|
	 * usable source. The rtc part is handled separately in rtc core code.
 | 
						|
	 */
 | 
						|
	cycle_now = tk_clock_read(&tk->tkr_mono);
 | 
						|
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
 | 
						|
		cycle_now > tk->tkr_mono.cycle_last) {
 | 
						|
		u64 nsec, cyc_delta;
 | 
						|
 | 
						|
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
 | 
						|
					      tk->tkr_mono.mask);
 | 
						|
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
 | 
						|
		ts_delta = ns_to_timespec64(nsec);
 | 
						|
		sleeptime_injected = true;
 | 
						|
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
 | 
						|
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
 | 
						|
		sleeptime_injected = true;
 | 
						|
	}
 | 
						|
 | 
						|
	if (sleeptime_injected)
 | 
						|
		__timekeeping_inject_sleeptime(tk, &ts_delta);
 | 
						|
 | 
						|
	/* Re-base the last cycle value */
 | 
						|
	tk->tkr_mono.cycle_last = cycle_now;
 | 
						|
	tk->tkr_raw.cycle_last  = cycle_now;
 | 
						|
 | 
						|
	tk->ntp_error = 0;
 | 
						|
	timekeeping_suspended = 0;
 | 
						|
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	touch_softlockup_watchdog();
 | 
						|
 | 
						|
	tick_resume();
 | 
						|
	hrtimers_resume();
 | 
						|
}
 | 
						|
 | 
						|
int timekeeping_suspend(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long flags;
 | 
						|
	struct timespec64		delta, delta_delta;
 | 
						|
	static struct timespec64	old_delta;
 | 
						|
 | 
						|
	read_persistent_clock64(&timekeeping_suspend_time);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * On some systems the persistent_clock can not be detected at
 | 
						|
	 * timekeeping_init by its return value, so if we see a valid
 | 
						|
	 * value returned, update the persistent_clock_exists flag.
 | 
						|
	 */
 | 
						|
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
 | 
						|
		persistent_clock_exists = true;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
	timekeeping_forward_now(tk);
 | 
						|
	timekeeping_suspended = 1;
 | 
						|
 | 
						|
	if (persistent_clock_exists) {
 | 
						|
		/*
 | 
						|
		 * To avoid drift caused by repeated suspend/resumes,
 | 
						|
		 * which each can add ~1 second drift error,
 | 
						|
		 * try to compensate so the difference in system time
 | 
						|
		 * and persistent_clock time stays close to constant.
 | 
						|
		 */
 | 
						|
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
 | 
						|
		delta_delta = timespec64_sub(delta, old_delta);
 | 
						|
		if (abs(delta_delta.tv_sec) >= 2) {
 | 
						|
			/*
 | 
						|
			 * if delta_delta is too large, assume time correction
 | 
						|
			 * has occurred and set old_delta to the current delta.
 | 
						|
			 */
 | 
						|
			old_delta = delta;
 | 
						|
		} else {
 | 
						|
			/* Otherwise try to adjust old_system to compensate */
 | 
						|
			timekeeping_suspend_time =
 | 
						|
				timespec64_add(timekeeping_suspend_time, delta_delta);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	timekeeping_update(tk, TK_MIRROR);
 | 
						|
	halt_fast_timekeeper(tk);
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	tick_suspend();
 | 
						|
	clocksource_suspend();
 | 
						|
	clockevents_suspend();
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* sysfs resume/suspend bits for timekeeping */
 | 
						|
static struct syscore_ops timekeeping_syscore_ops = {
 | 
						|
	.resume		= timekeeping_resume,
 | 
						|
	.suspend	= timekeeping_suspend,
 | 
						|
};
 | 
						|
 | 
						|
static int __init timekeeping_init_ops(void)
 | 
						|
{
 | 
						|
	register_syscore_ops(&timekeeping_syscore_ops);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
device_initcall(timekeeping_init_ops);
 | 
						|
 | 
						|
/*
 | 
						|
 * Apply a multiplier adjustment to the timekeeper
 | 
						|
 */
 | 
						|
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
 | 
						|
							 s64 offset,
 | 
						|
							 bool negative,
 | 
						|
							 int adj_scale)
 | 
						|
{
 | 
						|
	s64 interval = tk->cycle_interval;
 | 
						|
	s32 mult_adj = 1;
 | 
						|
 | 
						|
	if (negative) {
 | 
						|
		mult_adj = -mult_adj;
 | 
						|
		interval = -interval;
 | 
						|
		offset  = -offset;
 | 
						|
	}
 | 
						|
	mult_adj <<= adj_scale;
 | 
						|
	interval <<= adj_scale;
 | 
						|
	offset <<= adj_scale;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * So the following can be confusing.
 | 
						|
	 *
 | 
						|
	 * To keep things simple, lets assume mult_adj == 1 for now.
 | 
						|
	 *
 | 
						|
	 * When mult_adj != 1, remember that the interval and offset values
 | 
						|
	 * have been appropriately scaled so the math is the same.
 | 
						|
	 *
 | 
						|
	 * The basic idea here is that we're increasing the multiplier
 | 
						|
	 * by one, this causes the xtime_interval to be incremented by
 | 
						|
	 * one cycle_interval. This is because:
 | 
						|
	 *	xtime_interval = cycle_interval * mult
 | 
						|
	 * So if mult is being incremented by one:
 | 
						|
	 *	xtime_interval = cycle_interval * (mult + 1)
 | 
						|
	 * Its the same as:
 | 
						|
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
 | 
						|
	 * Which can be shortened to:
 | 
						|
	 *	xtime_interval += cycle_interval
 | 
						|
	 *
 | 
						|
	 * So offset stores the non-accumulated cycles. Thus the current
 | 
						|
	 * time (in shifted nanoseconds) is:
 | 
						|
	 *	now = (offset * adj) + xtime_nsec
 | 
						|
	 * Now, even though we're adjusting the clock frequency, we have
 | 
						|
	 * to keep time consistent. In other words, we can't jump back
 | 
						|
	 * in time, and we also want to avoid jumping forward in time.
 | 
						|
	 *
 | 
						|
	 * So given the same offset value, we need the time to be the same
 | 
						|
	 * both before and after the freq adjustment.
 | 
						|
	 *	now = (offset * adj_1) + xtime_nsec_1
 | 
						|
	 *	now = (offset * adj_2) + xtime_nsec_2
 | 
						|
	 * So:
 | 
						|
	 *	(offset * adj_1) + xtime_nsec_1 =
 | 
						|
	 *		(offset * adj_2) + xtime_nsec_2
 | 
						|
	 * And we know:
 | 
						|
	 *	adj_2 = adj_1 + 1
 | 
						|
	 * So:
 | 
						|
	 *	(offset * adj_1) + xtime_nsec_1 =
 | 
						|
	 *		(offset * (adj_1+1)) + xtime_nsec_2
 | 
						|
	 *	(offset * adj_1) + xtime_nsec_1 =
 | 
						|
	 *		(offset * adj_1) + offset + xtime_nsec_2
 | 
						|
	 * Canceling the sides:
 | 
						|
	 *	xtime_nsec_1 = offset + xtime_nsec_2
 | 
						|
	 * Which gives us:
 | 
						|
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
 | 
						|
	 * Which simplfies to:
 | 
						|
	 *	xtime_nsec -= offset
 | 
						|
	 *
 | 
						|
	 * XXX - TODO: Doc ntp_error calculation.
 | 
						|
	 */
 | 
						|
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
 | 
						|
		/* NTP adjustment caused clocksource mult overflow */
 | 
						|
		WARN_ON_ONCE(1);
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	tk->tkr_mono.mult += mult_adj;
 | 
						|
	tk->xtime_interval += interval;
 | 
						|
	tk->tkr_mono.xtime_nsec -= offset;
 | 
						|
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate the multiplier adjustment needed to match the frequency
 | 
						|
 * specified by NTP
 | 
						|
 */
 | 
						|
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
 | 
						|
							s64 offset)
 | 
						|
{
 | 
						|
	s64 interval = tk->cycle_interval;
 | 
						|
	s64 xinterval = tk->xtime_interval;
 | 
						|
	u32 base = tk->tkr_mono.clock->mult;
 | 
						|
	u32 max = tk->tkr_mono.clock->maxadj;
 | 
						|
	u32 cur_adj = tk->tkr_mono.mult;
 | 
						|
	s64 tick_error;
 | 
						|
	bool negative;
 | 
						|
	u32 adj_scale;
 | 
						|
 | 
						|
	/* Remove any current error adj from freq calculation */
 | 
						|
	if (tk->ntp_err_mult)
 | 
						|
		xinterval -= tk->cycle_interval;
 | 
						|
 | 
						|
	tk->ntp_tick = ntp_tick_length();
 | 
						|
 | 
						|
	/* Calculate current error per tick */
 | 
						|
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
 | 
						|
	tick_error -= (xinterval + tk->xtime_remainder);
 | 
						|
 | 
						|
	/* Don't worry about correcting it if its small */
 | 
						|
	if (likely((tick_error >= 0) && (tick_error <= interval)))
 | 
						|
		return;
 | 
						|
 | 
						|
	/* preserve the direction of correction */
 | 
						|
	negative = (tick_error < 0);
 | 
						|
 | 
						|
	/* If any adjustment would pass the max, just return */
 | 
						|
	if (negative && (cur_adj - 1) <= (base - max))
 | 
						|
		return;
 | 
						|
	if (!negative && (cur_adj + 1) >= (base + max))
 | 
						|
		return;
 | 
						|
	/*
 | 
						|
	 * Sort out the magnitude of the correction, but
 | 
						|
	 * avoid making so large a correction that we go
 | 
						|
	 * over the max adjustment.
 | 
						|
	 */
 | 
						|
	adj_scale = 0;
 | 
						|
	tick_error = abs(tick_error);
 | 
						|
	while (tick_error > interval) {
 | 
						|
		u32 adj = 1 << (adj_scale + 1);
 | 
						|
 | 
						|
		/* Check if adjustment gets us within 1 unit from the max */
 | 
						|
		if (negative && (cur_adj - adj) <= (base - max))
 | 
						|
			break;
 | 
						|
		if (!negative && (cur_adj + adj) >= (base + max))
 | 
						|
			break;
 | 
						|
 | 
						|
		adj_scale++;
 | 
						|
		tick_error >>= 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* scale the corrections */
 | 
						|
	timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Adjust the timekeeper's multiplier to the correct frequency
 | 
						|
 * and also to reduce the accumulated error value.
 | 
						|
 */
 | 
						|
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
 | 
						|
{
 | 
						|
	/* Correct for the current frequency error */
 | 
						|
	timekeeping_freqadjust(tk, offset);
 | 
						|
 | 
						|
	/* Next make a small adjustment to fix any cumulative error */
 | 
						|
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
 | 
						|
		tk->ntp_err_mult = 1;
 | 
						|
		timekeeping_apply_adjustment(tk, offset, 0, 0);
 | 
						|
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
 | 
						|
		/* Undo any existing error adjustment */
 | 
						|
		timekeeping_apply_adjustment(tk, offset, 1, 0);
 | 
						|
		tk->ntp_err_mult = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(tk->tkr_mono.clock->maxadj &&
 | 
						|
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
 | 
						|
			> tk->tkr_mono.clock->maxadj))) {
 | 
						|
		printk_once(KERN_WARNING
 | 
						|
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
 | 
						|
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
 | 
						|
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * It may be possible that when we entered this function, xtime_nsec
 | 
						|
	 * was very small.  Further, if we're slightly speeding the clocksource
 | 
						|
	 * in the code above, its possible the required corrective factor to
 | 
						|
	 * xtime_nsec could cause it to underflow.
 | 
						|
	 *
 | 
						|
	 * Now, since we already accumulated the second, cannot simply roll
 | 
						|
	 * the accumulated second back, since the NTP subsystem has been
 | 
						|
	 * notified via second_overflow. So instead we push xtime_nsec forward
 | 
						|
	 * by the amount we underflowed, and add that amount into the error.
 | 
						|
	 *
 | 
						|
	 * We'll correct this error next time through this function, when
 | 
						|
	 * xtime_nsec is not as small.
 | 
						|
	 */
 | 
						|
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
 | 
						|
		s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
 | 
						|
		tk->tkr_mono.xtime_nsec = 0;
 | 
						|
		tk->ntp_error += neg << tk->ntp_error_shift;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 | 
						|
 *
 | 
						|
 * Helper function that accumulates the nsecs greater than a second
 | 
						|
 * from the xtime_nsec field to the xtime_secs field.
 | 
						|
 * It also calls into the NTP code to handle leapsecond processing.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
 | 
						|
{
 | 
						|
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 | 
						|
	unsigned int clock_set = 0;
 | 
						|
 | 
						|
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
 | 
						|
		int leap;
 | 
						|
 | 
						|
		tk->tkr_mono.xtime_nsec -= nsecps;
 | 
						|
		tk->xtime_sec++;
 | 
						|
 | 
						|
		/* Figure out if its a leap sec and apply if needed */
 | 
						|
		leap = second_overflow(tk->xtime_sec);
 | 
						|
		if (unlikely(leap)) {
 | 
						|
			struct timespec64 ts;
 | 
						|
 | 
						|
			tk->xtime_sec += leap;
 | 
						|
 | 
						|
			ts.tv_sec = leap;
 | 
						|
			ts.tv_nsec = 0;
 | 
						|
			tk_set_wall_to_mono(tk,
 | 
						|
				timespec64_sub(tk->wall_to_monotonic, ts));
 | 
						|
 | 
						|
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
 | 
						|
 | 
						|
			clock_set = TK_CLOCK_WAS_SET;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return clock_set;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * logarithmic_accumulation - shifted accumulation of cycles
 | 
						|
 *
 | 
						|
 * This functions accumulates a shifted interval of cycles into
 | 
						|
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 | 
						|
 * loop.
 | 
						|
 *
 | 
						|
 * Returns the unconsumed cycles.
 | 
						|
 */
 | 
						|
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
 | 
						|
				    u32 shift, unsigned int *clock_set)
 | 
						|
{
 | 
						|
	u64 interval = tk->cycle_interval << shift;
 | 
						|
	u64 snsec_per_sec;
 | 
						|
 | 
						|
	/* If the offset is smaller than a shifted interval, do nothing */
 | 
						|
	if (offset < interval)
 | 
						|
		return offset;
 | 
						|
 | 
						|
	/* Accumulate one shifted interval */
 | 
						|
	offset -= interval;
 | 
						|
	tk->tkr_mono.cycle_last += interval;
 | 
						|
	tk->tkr_raw.cycle_last  += interval;
 | 
						|
 | 
						|
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
 | 
						|
	*clock_set |= accumulate_nsecs_to_secs(tk);
 | 
						|
 | 
						|
	/* Accumulate raw time */
 | 
						|
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
 | 
						|
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 | 
						|
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
 | 
						|
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
 | 
						|
		tk->raw_sec++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Accumulate error between NTP and clock interval */
 | 
						|
	tk->ntp_error += tk->ntp_tick << shift;
 | 
						|
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
 | 
						|
						(tk->ntp_error_shift + shift);
 | 
						|
 | 
						|
	return offset;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * update_wall_time - Uses the current clocksource to increment the wall time
 | 
						|
 *
 | 
						|
 */
 | 
						|
void update_wall_time(void)
 | 
						|
{
 | 
						|
	struct timekeeper *real_tk = &tk_core.timekeeper;
 | 
						|
	struct timekeeper *tk = &shadow_timekeeper;
 | 
						|
	u64 offset;
 | 
						|
	int shift = 0, maxshift;
 | 
						|
	unsigned int clock_set = 0;
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	/* Make sure we're fully resumed: */
 | 
						|
	if (unlikely(timekeeping_suspended))
 | 
						|
		goto out;
 | 
						|
 | 
						|
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 | 
						|
	offset = real_tk->cycle_interval;
 | 
						|
#else
 | 
						|
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
 | 
						|
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Check if there's really nothing to do */
 | 
						|
	if (offset < real_tk->cycle_interval)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	/* Do some additional sanity checking */
 | 
						|
	timekeeping_check_update(tk, offset);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * With NO_HZ we may have to accumulate many cycle_intervals
 | 
						|
	 * (think "ticks") worth of time at once. To do this efficiently,
 | 
						|
	 * we calculate the largest doubling multiple of cycle_intervals
 | 
						|
	 * that is smaller than the offset.  We then accumulate that
 | 
						|
	 * chunk in one go, and then try to consume the next smaller
 | 
						|
	 * doubled multiple.
 | 
						|
	 */
 | 
						|
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
 | 
						|
	shift = max(0, shift);
 | 
						|
	/* Bound shift to one less than what overflows tick_length */
 | 
						|
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
 | 
						|
	shift = min(shift, maxshift);
 | 
						|
	while (offset >= tk->cycle_interval) {
 | 
						|
		offset = logarithmic_accumulation(tk, offset, shift,
 | 
						|
							&clock_set);
 | 
						|
		if (offset < tk->cycle_interval<<shift)
 | 
						|
			shift--;
 | 
						|
	}
 | 
						|
 | 
						|
	/* correct the clock when NTP error is too big */
 | 
						|
	timekeeping_adjust(tk, offset);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Finally, make sure that after the rounding
 | 
						|
	 * xtime_nsec isn't larger than NSEC_PER_SEC
 | 
						|
	 */
 | 
						|
	clock_set |= accumulate_nsecs_to_secs(tk);
 | 
						|
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
	/*
 | 
						|
	 * Update the real timekeeper.
 | 
						|
	 *
 | 
						|
	 * We could avoid this memcpy by switching pointers, but that
 | 
						|
	 * requires changes to all other timekeeper usage sites as
 | 
						|
	 * well, i.e. move the timekeeper pointer getter into the
 | 
						|
	 * spinlocked/seqcount protected sections. And we trade this
 | 
						|
	 * memcpy under the tk_core.seq against one before we start
 | 
						|
	 * updating.
 | 
						|
	 */
 | 
						|
	timekeeping_update(tk, clock_set);
 | 
						|
	memcpy(real_tk, tk, sizeof(*tk));
 | 
						|
	/* The memcpy must come last. Do not put anything here! */
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
out:
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
	if (clock_set)
 | 
						|
		/* Have to call _delayed version, since in irq context*/
 | 
						|
		clock_was_set_delayed();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * getboottime64 - Return the real time of system boot.
 | 
						|
 * @ts:		pointer to the timespec64 to be set
 | 
						|
 *
 | 
						|
 * Returns the wall-time of boot in a timespec64.
 | 
						|
 *
 | 
						|
 * This is based on the wall_to_monotonic offset and the total suspend
 | 
						|
 * time. Calls to settimeofday will affect the value returned (which
 | 
						|
 * basically means that however wrong your real time clock is at boot time,
 | 
						|
 * you get the right time here).
 | 
						|
 */
 | 
						|
void getboottime64(struct timespec64 *ts)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
 | 
						|
 | 
						|
	*ts = ktime_to_timespec64(t);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(getboottime64);
 | 
						|
 | 
						|
unsigned long get_seconds(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
 | 
						|
	return tk->xtime_sec;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(get_seconds);
 | 
						|
 | 
						|
struct timespec __current_kernel_time(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
 | 
						|
	return timespec64_to_timespec(tk_xtime(tk));
 | 
						|
}
 | 
						|
 | 
						|
struct timespec64 current_kernel_time64(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	struct timespec64 now;
 | 
						|
	unsigned long seq;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
		now = tk_xtime(tk);
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return now;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(current_kernel_time64);
 | 
						|
 | 
						|
struct timespec64 get_monotonic_coarse64(void)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	struct timespec64 now, mono;
 | 
						|
	unsigned long seq;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
		now = tk_xtime(tk);
 | 
						|
		mono = tk->wall_to_monotonic;
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
 | 
						|
				now.tv_nsec + mono.tv_nsec);
 | 
						|
 | 
						|
	return now;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(get_monotonic_coarse64);
 | 
						|
 | 
						|
/*
 | 
						|
 * Must hold jiffies_lock
 | 
						|
 */
 | 
						|
void do_timer(unsigned long ticks)
 | 
						|
{
 | 
						|
	jiffies_64 += ticks;
 | 
						|
	calc_global_load(ticks);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ktime_get_update_offsets_now - hrtimer helper
 | 
						|
 * @cwsseq:	pointer to check and store the clock was set sequence number
 | 
						|
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 | 
						|
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 | 
						|
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 | 
						|
 *
 | 
						|
 * Returns current monotonic time and updates the offsets if the
 | 
						|
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 | 
						|
 * different.
 | 
						|
 *
 | 
						|
 * Called from hrtimer_interrupt() or retrigger_next_event()
 | 
						|
 */
 | 
						|
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
 | 
						|
				     ktime_t *offs_boot, ktime_t *offs_tai)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned int seq;
 | 
						|
	ktime_t base;
 | 
						|
	u64 nsecs;
 | 
						|
 | 
						|
	do {
 | 
						|
		seq = read_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
		base = tk->tkr_mono.base;
 | 
						|
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
 | 
						|
		base = ktime_add_ns(base, nsecs);
 | 
						|
 | 
						|
		if (*cwsseq != tk->clock_was_set_seq) {
 | 
						|
			*cwsseq = tk->clock_was_set_seq;
 | 
						|
			*offs_real = tk->offs_real;
 | 
						|
			*offs_boot = tk->offs_boot;
 | 
						|
			*offs_tai = tk->offs_tai;
 | 
						|
		}
 | 
						|
 | 
						|
		/* Handle leapsecond insertion adjustments */
 | 
						|
		if (unlikely(base >= tk->next_leap_ktime))
 | 
						|
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
 | 
						|
 | 
						|
	} while (read_seqcount_retry(&tk_core.seq, seq));
 | 
						|
 | 
						|
	return base;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
 | 
						|
 */
 | 
						|
static int timekeeping_validate_timex(struct timex *txc)
 | 
						|
{
 | 
						|
	if (txc->modes & ADJ_ADJTIME) {
 | 
						|
		/* singleshot must not be used with any other mode bits */
 | 
						|
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
 | 
						|
			return -EINVAL;
 | 
						|
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
 | 
						|
		    !capable(CAP_SYS_TIME))
 | 
						|
			return -EPERM;
 | 
						|
	} else {
 | 
						|
		/* In order to modify anything, you gotta be super-user! */
 | 
						|
		if (txc->modes && !capable(CAP_SYS_TIME))
 | 
						|
			return -EPERM;
 | 
						|
		/*
 | 
						|
		 * if the quartz is off by more than 10% then
 | 
						|
		 * something is VERY wrong!
 | 
						|
		 */
 | 
						|
		if (txc->modes & ADJ_TICK &&
 | 
						|
		    (txc->tick <  900000/USER_HZ ||
 | 
						|
		     txc->tick > 1100000/USER_HZ))
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (txc->modes & ADJ_SETOFFSET) {
 | 
						|
		/* In order to inject time, you gotta be super-user! */
 | 
						|
		if (!capable(CAP_SYS_TIME))
 | 
						|
			return -EPERM;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Validate if a timespec/timeval used to inject a time
 | 
						|
		 * offset is valid.  Offsets can be postive or negative, so
 | 
						|
		 * we don't check tv_sec. The value of the timeval/timespec
 | 
						|
		 * is the sum of its fields,but *NOTE*:
 | 
						|
		 * The field tv_usec/tv_nsec must always be non-negative and
 | 
						|
		 * we can't have more nanoseconds/microseconds than a second.
 | 
						|
		 */
 | 
						|
		if (txc->time.tv_usec < 0)
 | 
						|
			return -EINVAL;
 | 
						|
 | 
						|
		if (txc->modes & ADJ_NANO) {
 | 
						|
			if (txc->time.tv_usec >= NSEC_PER_SEC)
 | 
						|
				return -EINVAL;
 | 
						|
		} else {
 | 
						|
			if (txc->time.tv_usec >= USEC_PER_SEC)
 | 
						|
				return -EINVAL;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check for potential multiplication overflows that can
 | 
						|
	 * only happen on 64-bit systems:
 | 
						|
	 */
 | 
						|
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
 | 
						|
		if (LLONG_MIN / PPM_SCALE > txc->freq)
 | 
						|
			return -EINVAL;
 | 
						|
		if (LLONG_MAX / PPM_SCALE < txc->freq)
 | 
						|
			return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/**
 | 
						|
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 | 
						|
 */
 | 
						|
int do_adjtimex(struct timex *txc)
 | 
						|
{
 | 
						|
	struct timekeeper *tk = &tk_core.timekeeper;
 | 
						|
	unsigned long flags;
 | 
						|
	struct timespec64 ts;
 | 
						|
	s32 orig_tai, tai;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	/* Validate the data before disabling interrupts */
 | 
						|
	ret = timekeeping_validate_timex(txc);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	if (txc->modes & ADJ_SETOFFSET) {
 | 
						|
		struct timespec64 delta;
 | 
						|
		delta.tv_sec  = txc->time.tv_sec;
 | 
						|
		delta.tv_nsec = txc->time.tv_usec;
 | 
						|
		if (!(txc->modes & ADJ_NANO))
 | 
						|
			delta.tv_nsec *= 1000;
 | 
						|
		ret = timekeeping_inject_offset(&delta);
 | 
						|
		if (ret)
 | 
						|
			return ret;
 | 
						|
	}
 | 
						|
 | 
						|
	getnstimeofday64(&ts);
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
	orig_tai = tai = tk->tai_offset;
 | 
						|
	ret = __do_adjtimex(txc, &ts, &tai);
 | 
						|
 | 
						|
	if (tai != orig_tai) {
 | 
						|
		__timekeeping_set_tai_offset(tk, tai);
 | 
						|
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
 | 
						|
	}
 | 
						|
	tk_update_leap_state(tk);
 | 
						|
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
 | 
						|
	if (tai != orig_tai)
 | 
						|
		clock_was_set();
 | 
						|
 | 
						|
	ntp_notify_cmos_timer();
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_NTP_PPS
 | 
						|
/**
 | 
						|
 * hardpps() - Accessor function to NTP __hardpps function
 | 
						|
 */
 | 
						|
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
 | 
						|
{
 | 
						|
	unsigned long flags;
 | 
						|
 | 
						|
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
 | 
						|
	write_seqcount_begin(&tk_core.seq);
 | 
						|
 | 
						|
	__hardpps(phase_ts, raw_ts);
 | 
						|
 | 
						|
	write_seqcount_end(&tk_core.seq);
 | 
						|
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(hardpps);
 | 
						|
#endif /* CONFIG_NTP_PPS */
 | 
						|
 | 
						|
/**
 | 
						|
 * xtime_update() - advances the timekeeping infrastructure
 | 
						|
 * @ticks:	number of ticks, that have elapsed since the last call.
 | 
						|
 *
 | 
						|
 * Must be called with interrupts disabled.
 | 
						|
 */
 | 
						|
void xtime_update(unsigned long ticks)
 | 
						|
{
 | 
						|
	write_seqlock(&jiffies_lock);
 | 
						|
	do_timer(ticks);
 | 
						|
	write_sequnlock(&jiffies_lock);
 | 
						|
	update_wall_time();
 | 
						|
}
 |