mirror of
				https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
				synced 2025-11-04 07:44:51 +10:00 
			
		
		
		
	This mechanically converts all remaining cases of ancient open-coded timer
setup with the old setup_timer() API, which is the first step in timer
conversions. This has no behavioral changes, since it ultimately just
changes the order of assignment to fields of struct timer_list when
finding variations of:
    init_timer(&t);
    f.function = timer_callback;
    t.data = timer_callback_arg;
to be converted into:
    setup_timer(&t, timer_callback, timer_callback_arg);
The conversion is done with the following Coccinelle script, which
is an improved version of scripts/cocci/api/setup_timer.cocci, in the
following ways:
 - assignments-before-init_timer() cases
 - limit the .data case removal to the specific struct timer_list instance
 - handling calls by dereference (timer->field vs timer.field)
spatch --very-quiet --all-includes --include-headers \
	-I ./arch/x86/include -I ./arch/x86/include/generated \
	-I ./include -I ./arch/x86/include/uapi \
	-I ./arch/x86/include/generated/uapi -I ./include/uapi \
	-I ./include/generated/uapi --include ./include/linux/kconfig.h \
	--dir . \
	--cocci-file ~/src/data/setup_timer.cocci
@fix_address_of@
expression e;
@@
 init_timer(
-&(e)
+&e
 , ...)
// Match the common cases first to avoid Coccinelle parsing loops with
// "... when" clauses.
@match_immediate_function_data_after_init_timer@
expression e, func, da;
@@
-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
@match_immediate_function_data_before_init_timer@
expression e, func, da;
@@
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );
@match_function_and_data_after_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );
 ... when != func = e2
     when != da = e3
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
@match_function_and_data_before_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
... when != func = e2
    when != da = e3
-init_timer
+setup_timer
 ( \(&e\|e\)
+, func, da
 );
@r1 exists@
expression t;
identifier f;
position p;
@@
f(...) { ... when any
  init_timer@p(\(&t\|t\))
  ... when any
}
@r2 exists@
expression r1.t;
identifier g != r1.f;
expression e8;
@@
g(...) { ... when any
  \(t.data\|t->data\) = e8
  ... when any
}
// It is dangerous to use setup_timer if data field is initialized
// in another function.
@script:python depends on r2@
p << r1.p;
@@
cocci.include_match(False)
@r3@
expression r1.t, func, e7;
position r1.p;
@@
(
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
... when != func = e7
-t.function = func;
|
-t.function = func;
... when != func = e7
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
|
-init_timer@p(t);
+setup_timer(t, func, 0UL);
... when != func = e7
-t->function = func;
|
-t->function = func;
... when != func = e7
-init_timer@p(t);
+setup_timer(t, func, 0UL);
)
Signed-off-by: Kees Cook <keescook@chromium.org>
		
	
			
		
			
				
	
	
		
			1136 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1136 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
 | 
						|
 *
 | 
						|
 * (C) 2001 San Mehat <nettwerk@valinux.com>
 | 
						|
 * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
 | 
						|
 * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
 | 
						|
 *
 | 
						|
 * This driver for the Micro Memory PCI Memory Module with Battery Backup
 | 
						|
 * is Copyright Micro Memory Inc 2001-2002.  All rights reserved.
 | 
						|
 *
 | 
						|
 * This driver is released to the public under the terms of the
 | 
						|
 *  GNU GENERAL PUBLIC LICENSE version 2
 | 
						|
 * See the file COPYING for details.
 | 
						|
 *
 | 
						|
 * This driver provides a standard block device interface for Micro Memory(tm)
 | 
						|
 * PCI based RAM boards.
 | 
						|
 * 10/05/01: Phap Nguyen - Rebuilt the driver
 | 
						|
 * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
 | 
						|
 * 29oct2001:NeilBrown   - Use make_request_fn instead of request_fn
 | 
						|
 *                       - use stand disk partitioning (so fdisk works).
 | 
						|
 * 08nov2001:NeilBrown	 - change driver name from "mm" to "umem"
 | 
						|
 *			 - incorporate into main kernel
 | 
						|
 * 08apr2002:NeilBrown   - Move some of interrupt handle to tasklet
 | 
						|
 *			 - use spin_lock_bh instead of _irq
 | 
						|
 *			 - Never block on make_request.  queue
 | 
						|
 *			   bh's instead.
 | 
						|
 *			 - unregister umem from devfs at mod unload
 | 
						|
 *			 - Change version to 2.3
 | 
						|
 * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
 | 
						|
 * 07Jan2002: P. Nguyen  - Used PCI Memory Write & Invalidate for DMA
 | 
						|
 * 15May2002:NeilBrown   - convert to bio for 2.5
 | 
						|
 * 17May2002:NeilBrown   - remove init_mem initialisation.  Instead detect
 | 
						|
 *			 - a sequence of writes that cover the card, and
 | 
						|
 *			 - set initialised bit then.
 | 
						|
 */
 | 
						|
 | 
						|
#undef DEBUG	/* #define DEBUG if you want debugging info (pr_debug) */
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/bio.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/mman.h>
 | 
						|
#include <linux/gfp.h>
 | 
						|
#include <linux/ioctl.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/timer.h>
 | 
						|
#include <linux/pci.h>
 | 
						|
#include <linux/dma-mapping.h>
 | 
						|
 | 
						|
#include <linux/fcntl.h>        /* O_ACCMODE */
 | 
						|
#include <linux/hdreg.h>  /* HDIO_GETGEO */
 | 
						|
 | 
						|
#include "umem.h"
 | 
						|
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <asm/io.h>
 | 
						|
 | 
						|
#define MM_MAXCARDS 4
 | 
						|
#define MM_RAHEAD 2      /* two sectors */
 | 
						|
#define MM_BLKSIZE 1024  /* 1k blocks */
 | 
						|
#define MM_HARDSECT 512  /* 512-byte hardware sectors */
 | 
						|
#define MM_SHIFT 6       /* max 64 partitions on 4 cards  */
 | 
						|
 | 
						|
/*
 | 
						|
 * Version Information
 | 
						|
 */
 | 
						|
 | 
						|
#define DRIVER_NAME	"umem"
 | 
						|
#define DRIVER_VERSION	"v2.3"
 | 
						|
#define DRIVER_AUTHOR	"San Mehat, Johannes Erdfelt, NeilBrown"
 | 
						|
#define DRIVER_DESC	"Micro Memory(tm) PCI memory board block driver"
 | 
						|
 | 
						|
static int debug;
 | 
						|
/* #define HW_TRACE(x)     writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
 | 
						|
#define HW_TRACE(x)
 | 
						|
 | 
						|
#define DEBUG_LED_ON_TRANSFER	0x01
 | 
						|
#define DEBUG_BATTERY_POLLING	0x02
 | 
						|
 | 
						|
module_param(debug, int, 0644);
 | 
						|
MODULE_PARM_DESC(debug, "Debug bitmask");
 | 
						|
 | 
						|
static int pci_read_cmd = 0x0C;		/* Read Multiple */
 | 
						|
module_param(pci_read_cmd, int, 0);
 | 
						|
MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
 | 
						|
 | 
						|
static int pci_write_cmd = 0x0F;	/* Write and Invalidate */
 | 
						|
module_param(pci_write_cmd, int, 0);
 | 
						|
MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
 | 
						|
 | 
						|
static int pci_cmds;
 | 
						|
 | 
						|
static int major_nr;
 | 
						|
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/blkpg.h>
 | 
						|
 | 
						|
struct cardinfo {
 | 
						|
	struct pci_dev	*dev;
 | 
						|
 | 
						|
	unsigned char	__iomem *csr_remap;
 | 
						|
	unsigned int	mm_size;  /* size in kbytes */
 | 
						|
 | 
						|
	unsigned int	init_size; /* initial segment, in sectors,
 | 
						|
				    * that we know to
 | 
						|
				    * have been written
 | 
						|
				    */
 | 
						|
	struct bio	*bio, *currentbio, **biotail;
 | 
						|
	struct bvec_iter current_iter;
 | 
						|
 | 
						|
	struct request_queue *queue;
 | 
						|
 | 
						|
	struct mm_page {
 | 
						|
		dma_addr_t		page_dma;
 | 
						|
		struct mm_dma_desc	*desc;
 | 
						|
		int	 		cnt, headcnt;
 | 
						|
		struct bio		*bio, **biotail;
 | 
						|
		struct bvec_iter	iter;
 | 
						|
	} mm_pages[2];
 | 
						|
#define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
 | 
						|
 | 
						|
	int  Active, Ready;
 | 
						|
 | 
						|
	struct tasklet_struct	tasklet;
 | 
						|
	unsigned int dma_status;
 | 
						|
 | 
						|
	struct {
 | 
						|
		int		good;
 | 
						|
		int		warned;
 | 
						|
		unsigned long	last_change;
 | 
						|
	} battery[2];
 | 
						|
 | 
						|
	spinlock_t 	lock;
 | 
						|
	int		check_batteries;
 | 
						|
 | 
						|
	int		flags;
 | 
						|
};
 | 
						|
 | 
						|
static struct cardinfo cards[MM_MAXCARDS];
 | 
						|
static struct timer_list battery_timer;
 | 
						|
 | 
						|
static int num_cards;
 | 
						|
 | 
						|
static struct gendisk *mm_gendisk[MM_MAXCARDS];
 | 
						|
 | 
						|
static void check_batteries(struct cardinfo *card);
 | 
						|
 | 
						|
static int get_userbit(struct cardinfo *card, int bit)
 | 
						|
{
 | 
						|
	unsigned char led;
 | 
						|
 | 
						|
	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 | 
						|
	return led & bit;
 | 
						|
}
 | 
						|
 | 
						|
static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
 | 
						|
{
 | 
						|
	unsigned char led;
 | 
						|
 | 
						|
	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 | 
						|
	if (state)
 | 
						|
		led |= bit;
 | 
						|
	else
 | 
						|
		led &= ~bit;
 | 
						|
	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * NOTE: For the power LED, use the LED_POWER_* macros since they differ
 | 
						|
 */
 | 
						|
static void set_led(struct cardinfo *card, int shift, unsigned char state)
 | 
						|
{
 | 
						|
	unsigned char led;
 | 
						|
 | 
						|
	led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
 | 
						|
	if (state == LED_FLIP)
 | 
						|
		led ^= (1<<shift);
 | 
						|
	else {
 | 
						|
		led &= ~(0x03 << shift);
 | 
						|
		led |= (state << shift);
 | 
						|
	}
 | 
						|
	writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
#ifdef MM_DIAG
 | 
						|
static void dump_regs(struct cardinfo *card)
 | 
						|
{
 | 
						|
	unsigned char *p;
 | 
						|
	int i, i1;
 | 
						|
 | 
						|
	p = card->csr_remap;
 | 
						|
	for (i = 0; i < 8; i++) {
 | 
						|
		printk(KERN_DEBUG "%p   ", p);
 | 
						|
 | 
						|
		for (i1 = 0; i1 < 16; i1++)
 | 
						|
			printk("%02x ", *p++);
 | 
						|
 | 
						|
		printk("\n");
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
 | 
						|
{
 | 
						|
	dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
 | 
						|
	if (dmastat & DMASCR_ANY_ERR)
 | 
						|
		printk(KERN_CONT "ANY_ERR ");
 | 
						|
	if (dmastat & DMASCR_MBE_ERR)
 | 
						|
		printk(KERN_CONT "MBE_ERR ");
 | 
						|
	if (dmastat & DMASCR_PARITY_ERR_REP)
 | 
						|
		printk(KERN_CONT "PARITY_ERR_REP ");
 | 
						|
	if (dmastat & DMASCR_PARITY_ERR_DET)
 | 
						|
		printk(KERN_CONT "PARITY_ERR_DET ");
 | 
						|
	if (dmastat & DMASCR_SYSTEM_ERR_SIG)
 | 
						|
		printk(KERN_CONT "SYSTEM_ERR_SIG ");
 | 
						|
	if (dmastat & DMASCR_TARGET_ABT)
 | 
						|
		printk(KERN_CONT "TARGET_ABT ");
 | 
						|
	if (dmastat & DMASCR_MASTER_ABT)
 | 
						|
		printk(KERN_CONT "MASTER_ABT ");
 | 
						|
	if (dmastat & DMASCR_CHAIN_COMPLETE)
 | 
						|
		printk(KERN_CONT "CHAIN_COMPLETE ");
 | 
						|
	if (dmastat & DMASCR_DMA_COMPLETE)
 | 
						|
		printk(KERN_CONT "DMA_COMPLETE ");
 | 
						|
	printk("\n");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Theory of request handling
 | 
						|
 *
 | 
						|
 * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
 | 
						|
 * We have two pages of mm_dma_desc, holding about 64 descriptors
 | 
						|
 * each.  These are allocated at init time.
 | 
						|
 * One page is "Ready" and is either full, or can have request added.
 | 
						|
 * The other page might be "Active", which DMA is happening on it.
 | 
						|
 *
 | 
						|
 * Whenever IO on the active page completes, the Ready page is activated
 | 
						|
 * and the ex-Active page is clean out and made Ready.
 | 
						|
 * Otherwise the Ready page is only activated when it becomes full.
 | 
						|
 *
 | 
						|
 * If a request arrives while both pages a full, it is queued, and b_rdev is
 | 
						|
 * overloaded to record whether it was a read or a write.
 | 
						|
 *
 | 
						|
 * The interrupt handler only polls the device to clear the interrupt.
 | 
						|
 * The processing of the result is done in a tasklet.
 | 
						|
 */
 | 
						|
 | 
						|
static void mm_start_io(struct cardinfo *card)
 | 
						|
{
 | 
						|
	/* we have the lock, we know there is
 | 
						|
	 * no IO active, and we know that card->Active
 | 
						|
	 * is set
 | 
						|
	 */
 | 
						|
	struct mm_dma_desc *desc;
 | 
						|
	struct mm_page *page;
 | 
						|
	int offset;
 | 
						|
 | 
						|
	/* make the last descriptor end the chain */
 | 
						|
	page = &card->mm_pages[card->Active];
 | 
						|
	pr_debug("start_io: %d %d->%d\n",
 | 
						|
		card->Active, page->headcnt, page->cnt - 1);
 | 
						|
	desc = &page->desc[page->cnt-1];
 | 
						|
 | 
						|
	desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
 | 
						|
	desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
 | 
						|
	desc->sem_control_bits = desc->control_bits;
 | 
						|
 | 
						|
 | 
						|
	if (debug & DEBUG_LED_ON_TRANSFER)
 | 
						|
		set_led(card, LED_REMOVE, LED_ON);
 | 
						|
 | 
						|
	desc = &page->desc[page->headcnt];
 | 
						|
	writel(0, card->csr_remap + DMA_PCI_ADDR);
 | 
						|
	writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
 | 
						|
 | 
						|
	writel(0, card->csr_remap + DMA_LOCAL_ADDR);
 | 
						|
	writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
 | 
						|
 | 
						|
	writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
 | 
						|
	writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
 | 
						|
 | 
						|
	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
 | 
						|
	writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
 | 
						|
 | 
						|
	offset = ((char *)desc) - ((char *)page->desc);
 | 
						|
	writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
 | 
						|
	       card->csr_remap + DMA_DESCRIPTOR_ADDR);
 | 
						|
	/* Force the value to u64 before shifting otherwise >> 32 is undefined C
 | 
						|
	 * and on some ports will do nothing ! */
 | 
						|
	writel(cpu_to_le32(((u64)page->page_dma)>>32),
 | 
						|
	       card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
 | 
						|
 | 
						|
	/* Go, go, go */
 | 
						|
	writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
 | 
						|
	       card->csr_remap + DMA_STATUS_CTRL);
 | 
						|
}
 | 
						|
 | 
						|
static int add_bio(struct cardinfo *card);
 | 
						|
 | 
						|
static void activate(struct cardinfo *card)
 | 
						|
{
 | 
						|
	/* if No page is Active, and Ready is
 | 
						|
	 * not empty, then switch Ready page
 | 
						|
	 * to active and start IO.
 | 
						|
	 * Then add any bh's that are available to Ready
 | 
						|
	 */
 | 
						|
 | 
						|
	do {
 | 
						|
		while (add_bio(card))
 | 
						|
			;
 | 
						|
 | 
						|
		if (card->Active == -1 &&
 | 
						|
		    card->mm_pages[card->Ready].cnt > 0) {
 | 
						|
			card->Active = card->Ready;
 | 
						|
			card->Ready = 1-card->Ready;
 | 
						|
			mm_start_io(card);
 | 
						|
		}
 | 
						|
 | 
						|
	} while (card->Active == -1 && add_bio(card));
 | 
						|
}
 | 
						|
 | 
						|
static inline void reset_page(struct mm_page *page)
 | 
						|
{
 | 
						|
	page->cnt = 0;
 | 
						|
	page->headcnt = 0;
 | 
						|
	page->bio = NULL;
 | 
						|
	page->biotail = &page->bio;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If there is room on Ready page, take
 | 
						|
 * one bh off list and add it.
 | 
						|
 * return 1 if there was room, else 0.
 | 
						|
 */
 | 
						|
static int add_bio(struct cardinfo *card)
 | 
						|
{
 | 
						|
	struct mm_page *p;
 | 
						|
	struct mm_dma_desc *desc;
 | 
						|
	dma_addr_t dma_handle;
 | 
						|
	int offset;
 | 
						|
	struct bio *bio;
 | 
						|
	struct bio_vec vec;
 | 
						|
 | 
						|
	bio = card->currentbio;
 | 
						|
	if (!bio && card->bio) {
 | 
						|
		card->currentbio = card->bio;
 | 
						|
		card->current_iter = card->bio->bi_iter;
 | 
						|
		card->bio = card->bio->bi_next;
 | 
						|
		if (card->bio == NULL)
 | 
						|
			card->biotail = &card->bio;
 | 
						|
		card->currentbio->bi_next = NULL;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	if (!bio)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	vec = bio_iter_iovec(bio, card->current_iter);
 | 
						|
 | 
						|
	dma_handle = pci_map_page(card->dev,
 | 
						|
				  vec.bv_page,
 | 
						|
				  vec.bv_offset,
 | 
						|
				  vec.bv_len,
 | 
						|
				  bio_op(bio) == REQ_OP_READ ?
 | 
						|
				  PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
 | 
						|
 | 
						|
	p = &card->mm_pages[card->Ready];
 | 
						|
	desc = &p->desc[p->cnt];
 | 
						|
	p->cnt++;
 | 
						|
	if (p->bio == NULL)
 | 
						|
		p->iter = card->current_iter;
 | 
						|
	if ((p->biotail) != &bio->bi_next) {
 | 
						|
		*(p->biotail) = bio;
 | 
						|
		p->biotail = &(bio->bi_next);
 | 
						|
		bio->bi_next = NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	desc->data_dma_handle = dma_handle;
 | 
						|
 | 
						|
	desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
 | 
						|
	desc->local_addr = cpu_to_le64(card->current_iter.bi_sector << 9);
 | 
						|
	desc->transfer_size = cpu_to_le32(vec.bv_len);
 | 
						|
	offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
 | 
						|
	desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
 | 
						|
	desc->zero1 = desc->zero2 = 0;
 | 
						|
	offset = (((char *)(desc+1)) - ((char *)p->desc));
 | 
						|
	desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
 | 
						|
	desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
 | 
						|
					 DMASCR_PARITY_INT_EN|
 | 
						|
					 DMASCR_CHAIN_EN |
 | 
						|
					 DMASCR_SEM_EN |
 | 
						|
					 pci_cmds);
 | 
						|
	if (bio_op(bio) == REQ_OP_WRITE)
 | 
						|
		desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
 | 
						|
	desc->sem_control_bits = desc->control_bits;
 | 
						|
 | 
						|
 | 
						|
	bio_advance_iter(bio, &card->current_iter, vec.bv_len);
 | 
						|
	if (!card->current_iter.bi_size)
 | 
						|
		card->currentbio = NULL;
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void process_page(unsigned long data)
 | 
						|
{
 | 
						|
	/* check if any of the requests in the page are DMA_COMPLETE,
 | 
						|
	 * and deal with them appropriately.
 | 
						|
	 * If we find a descriptor without DMA_COMPLETE in the semaphore, then
 | 
						|
	 * dma must have hit an error on that descriptor, so use dma_status
 | 
						|
	 * instead and assume that all following descriptors must be re-tried.
 | 
						|
	 */
 | 
						|
	struct mm_page *page;
 | 
						|
	struct bio *return_bio = NULL;
 | 
						|
	struct cardinfo *card = (struct cardinfo *)data;
 | 
						|
	unsigned int dma_status = card->dma_status;
 | 
						|
 | 
						|
	spin_lock_bh(&card->lock);
 | 
						|
	if (card->Active < 0)
 | 
						|
		goto out_unlock;
 | 
						|
	page = &card->mm_pages[card->Active];
 | 
						|
 | 
						|
	while (page->headcnt < page->cnt) {
 | 
						|
		struct bio *bio = page->bio;
 | 
						|
		struct mm_dma_desc *desc = &page->desc[page->headcnt];
 | 
						|
		int control = le32_to_cpu(desc->sem_control_bits);
 | 
						|
		int last = 0;
 | 
						|
		struct bio_vec vec;
 | 
						|
 | 
						|
		if (!(control & DMASCR_DMA_COMPLETE)) {
 | 
						|
			control = dma_status;
 | 
						|
			last = 1;
 | 
						|
		}
 | 
						|
 | 
						|
		page->headcnt++;
 | 
						|
		vec = bio_iter_iovec(bio, page->iter);
 | 
						|
		bio_advance_iter(bio, &page->iter, vec.bv_len);
 | 
						|
 | 
						|
		if (!page->iter.bi_size) {
 | 
						|
			page->bio = bio->bi_next;
 | 
						|
			if (page->bio)
 | 
						|
				page->iter = page->bio->bi_iter;
 | 
						|
		}
 | 
						|
 | 
						|
		pci_unmap_page(card->dev, desc->data_dma_handle,
 | 
						|
			       vec.bv_len,
 | 
						|
				 (control & DMASCR_TRANSFER_READ) ?
 | 
						|
				PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
 | 
						|
		if (control & DMASCR_HARD_ERROR) {
 | 
						|
			/* error */
 | 
						|
			bio->bi_status = BLK_STS_IOERR;
 | 
						|
			dev_printk(KERN_WARNING, &card->dev->dev,
 | 
						|
				"I/O error on sector %d/%d\n",
 | 
						|
				le32_to_cpu(desc->local_addr)>>9,
 | 
						|
				le32_to_cpu(desc->transfer_size));
 | 
						|
			dump_dmastat(card, control);
 | 
						|
		} else if (op_is_write(bio_op(bio)) &&
 | 
						|
			   le32_to_cpu(desc->local_addr) >> 9 ==
 | 
						|
				card->init_size) {
 | 
						|
			card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
 | 
						|
			if (card->init_size >> 1 >= card->mm_size) {
 | 
						|
				dev_printk(KERN_INFO, &card->dev->dev,
 | 
						|
					"memory now initialised\n");
 | 
						|
				set_userbit(card, MEMORY_INITIALIZED, 1);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (bio != page->bio) {
 | 
						|
			bio->bi_next = return_bio;
 | 
						|
			return_bio = bio;
 | 
						|
		}
 | 
						|
 | 
						|
		if (last)
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (debug & DEBUG_LED_ON_TRANSFER)
 | 
						|
		set_led(card, LED_REMOVE, LED_OFF);
 | 
						|
 | 
						|
	if (card->check_batteries) {
 | 
						|
		card->check_batteries = 0;
 | 
						|
		check_batteries(card);
 | 
						|
	}
 | 
						|
	if (page->headcnt >= page->cnt) {
 | 
						|
		reset_page(page);
 | 
						|
		card->Active = -1;
 | 
						|
		activate(card);
 | 
						|
	} else {
 | 
						|
		/* haven't finished with this one yet */
 | 
						|
		pr_debug("do some more\n");
 | 
						|
		mm_start_io(card);
 | 
						|
	}
 | 
						|
 out_unlock:
 | 
						|
	spin_unlock_bh(&card->lock);
 | 
						|
 | 
						|
	while (return_bio) {
 | 
						|
		struct bio *bio = return_bio;
 | 
						|
 | 
						|
		return_bio = bio->bi_next;
 | 
						|
		bio->bi_next = NULL;
 | 
						|
		bio_endio(bio);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void mm_unplug(struct blk_plug_cb *cb, bool from_schedule)
 | 
						|
{
 | 
						|
	struct cardinfo *card = cb->data;
 | 
						|
 | 
						|
	spin_lock_irq(&card->lock);
 | 
						|
	activate(card);
 | 
						|
	spin_unlock_irq(&card->lock);
 | 
						|
	kfree(cb);
 | 
						|
}
 | 
						|
 | 
						|
static int mm_check_plugged(struct cardinfo *card)
 | 
						|
{
 | 
						|
	return !!blk_check_plugged(mm_unplug, card, sizeof(struct blk_plug_cb));
 | 
						|
}
 | 
						|
 | 
						|
static blk_qc_t mm_make_request(struct request_queue *q, struct bio *bio)
 | 
						|
{
 | 
						|
	struct cardinfo *card = q->queuedata;
 | 
						|
	pr_debug("mm_make_request %llu %u\n",
 | 
						|
		 (unsigned long long)bio->bi_iter.bi_sector,
 | 
						|
		 bio->bi_iter.bi_size);
 | 
						|
 | 
						|
	blk_queue_split(q, &bio);
 | 
						|
 | 
						|
	spin_lock_irq(&card->lock);
 | 
						|
	*card->biotail = bio;
 | 
						|
	bio->bi_next = NULL;
 | 
						|
	card->biotail = &bio->bi_next;
 | 
						|
	if (op_is_sync(bio->bi_opf) || !mm_check_plugged(card))
 | 
						|
		activate(card);
 | 
						|
	spin_unlock_irq(&card->lock);
 | 
						|
 | 
						|
	return BLK_QC_T_NONE;
 | 
						|
}
 | 
						|
 | 
						|
static irqreturn_t mm_interrupt(int irq, void *__card)
 | 
						|
{
 | 
						|
	struct cardinfo *card = (struct cardinfo *) __card;
 | 
						|
	unsigned int dma_status;
 | 
						|
	unsigned short cfg_status;
 | 
						|
 | 
						|
HW_TRACE(0x30);
 | 
						|
 | 
						|
	dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
 | 
						|
 | 
						|
	if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
 | 
						|
		/* interrupt wasn't for me ... */
 | 
						|
		return IRQ_NONE;
 | 
						|
	}
 | 
						|
 | 
						|
	/* clear COMPLETION interrupts */
 | 
						|
	if (card->flags & UM_FLAG_NO_BYTE_STATUS)
 | 
						|
		writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
 | 
						|
		       card->csr_remap + DMA_STATUS_CTRL);
 | 
						|
	else
 | 
						|
		writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
 | 
						|
		       card->csr_remap + DMA_STATUS_CTRL + 2);
 | 
						|
 | 
						|
	/* log errors and clear interrupt status */
 | 
						|
	if (dma_status & DMASCR_ANY_ERR) {
 | 
						|
		unsigned int	data_log1, data_log2;
 | 
						|
		unsigned int	addr_log1, addr_log2;
 | 
						|
		unsigned char	stat, count, syndrome, check;
 | 
						|
 | 
						|
		stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
 | 
						|
 | 
						|
		data_log1 = le32_to_cpu(readl(card->csr_remap +
 | 
						|
						ERROR_DATA_LOG));
 | 
						|
		data_log2 = le32_to_cpu(readl(card->csr_remap +
 | 
						|
						ERROR_DATA_LOG + 4));
 | 
						|
		addr_log1 = le32_to_cpu(readl(card->csr_remap +
 | 
						|
						ERROR_ADDR_LOG));
 | 
						|
		addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
 | 
						|
 | 
						|
		count = readb(card->csr_remap + ERROR_COUNT);
 | 
						|
		syndrome = readb(card->csr_remap + ERROR_SYNDROME);
 | 
						|
		check = readb(card->csr_remap + ERROR_CHECK);
 | 
						|
 | 
						|
		dump_dmastat(card, dma_status);
 | 
						|
 | 
						|
		if (stat & 0x01)
 | 
						|
			dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
				"Memory access error detected (err count %d)\n",
 | 
						|
				count);
 | 
						|
		if (stat & 0x02)
 | 
						|
			dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
				"Multi-bit EDC error\n");
 | 
						|
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
 | 
						|
			addr_log2, addr_log1, data_log2, data_log1);
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
 | 
						|
			check, syndrome);
 | 
						|
 | 
						|
		writeb(0, card->csr_remap + ERROR_COUNT);
 | 
						|
	}
 | 
						|
 | 
						|
	if (dma_status & DMASCR_PARITY_ERR_REP) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"PARITY ERROR REPORTED\n");
 | 
						|
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 | 
						|
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 | 
						|
	}
 | 
						|
 | 
						|
	if (dma_status & DMASCR_PARITY_ERR_DET) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"PARITY ERROR DETECTED\n");
 | 
						|
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 | 
						|
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 | 
						|
	}
 | 
						|
 | 
						|
	if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
 | 
						|
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 | 
						|
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 | 
						|
	}
 | 
						|
 | 
						|
	if (dma_status & DMASCR_TARGET_ABT) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
 | 
						|
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 | 
						|
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 | 
						|
	}
 | 
						|
 | 
						|
	if (dma_status & DMASCR_MASTER_ABT) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
 | 
						|
		pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
 | 
						|
		pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
 | 
						|
	}
 | 
						|
 | 
						|
	/* and process the DMA descriptors */
 | 
						|
	card->dma_status = dma_status;
 | 
						|
	tasklet_schedule(&card->tasklet);
 | 
						|
 | 
						|
HW_TRACE(0x36);
 | 
						|
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If both batteries are good, no LED
 | 
						|
 * If either battery has been warned, solid LED
 | 
						|
 * If both batteries are bad, flash the LED quickly
 | 
						|
 * If either battery is bad, flash the LED semi quickly
 | 
						|
 */
 | 
						|
static void set_fault_to_battery_status(struct cardinfo *card)
 | 
						|
{
 | 
						|
	if (card->battery[0].good && card->battery[1].good)
 | 
						|
		set_led(card, LED_FAULT, LED_OFF);
 | 
						|
	else if (card->battery[0].warned || card->battery[1].warned)
 | 
						|
		set_led(card, LED_FAULT, LED_ON);
 | 
						|
	else if (!card->battery[0].good && !card->battery[1].good)
 | 
						|
		set_led(card, LED_FAULT, LED_FLASH_7_0);
 | 
						|
	else
 | 
						|
		set_led(card, LED_FAULT, LED_FLASH_3_5);
 | 
						|
}
 | 
						|
 | 
						|
static void init_battery_timer(void);
 | 
						|
 | 
						|
static int check_battery(struct cardinfo *card, int battery, int status)
 | 
						|
{
 | 
						|
	if (status != card->battery[battery].good) {
 | 
						|
		card->battery[battery].good = !card->battery[battery].good;
 | 
						|
		card->battery[battery].last_change = jiffies;
 | 
						|
 | 
						|
		if (card->battery[battery].good) {
 | 
						|
			dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
				"Battery %d now good\n", battery + 1);
 | 
						|
			card->battery[battery].warned = 0;
 | 
						|
		} else
 | 
						|
			dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
				"Battery %d now FAILED\n", battery + 1);
 | 
						|
 | 
						|
		return 1;
 | 
						|
	} else if (!card->battery[battery].good &&
 | 
						|
		   !card->battery[battery].warned &&
 | 
						|
		   time_after_eq(jiffies, card->battery[battery].last_change +
 | 
						|
				 (HZ * 60 * 60 * 5))) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"Battery %d still FAILED after 5 hours\n", battery + 1);
 | 
						|
		card->battery[battery].warned = 1;
 | 
						|
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void check_batteries(struct cardinfo *card)
 | 
						|
{
 | 
						|
	/* NOTE: this must *never* be called while the card
 | 
						|
	 * is doing (bus-to-card) DMA, or you will need the
 | 
						|
	 * reset switch
 | 
						|
	 */
 | 
						|
	unsigned char status;
 | 
						|
	int ret1, ret2;
 | 
						|
 | 
						|
	status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 | 
						|
	if (debug & DEBUG_BATTERY_POLLING)
 | 
						|
		dev_printk(KERN_DEBUG, &card->dev->dev,
 | 
						|
			"checking battery status, 1 = %s, 2 = %s\n",
 | 
						|
		       (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
 | 
						|
		       (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
 | 
						|
 | 
						|
	ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
 | 
						|
	ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
 | 
						|
 | 
						|
	if (ret1 || ret2)
 | 
						|
		set_fault_to_battery_status(card);
 | 
						|
}
 | 
						|
 | 
						|
static void check_all_batteries(unsigned long ptr)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (i = 0; i < num_cards; i++)
 | 
						|
		if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
 | 
						|
			struct cardinfo *card = &cards[i];
 | 
						|
			spin_lock_bh(&card->lock);
 | 
						|
			if (card->Active >= 0)
 | 
						|
				card->check_batteries = 1;
 | 
						|
			else
 | 
						|
				check_batteries(card);
 | 
						|
			spin_unlock_bh(&card->lock);
 | 
						|
		}
 | 
						|
 | 
						|
	init_battery_timer();
 | 
						|
}
 | 
						|
 | 
						|
static void init_battery_timer(void)
 | 
						|
{
 | 
						|
	setup_timer(&battery_timer, check_all_batteries, 0UL);
 | 
						|
	battery_timer.expires = jiffies + (HZ * 60);
 | 
						|
	add_timer(&battery_timer);
 | 
						|
}
 | 
						|
 | 
						|
static void del_battery_timer(void)
 | 
						|
{
 | 
						|
	del_timer(&battery_timer);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Note no locks taken out here.  In a worst case scenario, we could drop
 | 
						|
 * a chunk of system memory.  But that should never happen, since validation
 | 
						|
 * happens at open or mount time, when locks are held.
 | 
						|
 *
 | 
						|
 *	That's crap, since doing that while some partitions are opened
 | 
						|
 * or mounted will give you really nasty results.
 | 
						|
 */
 | 
						|
static int mm_revalidate(struct gendisk *disk)
 | 
						|
{
 | 
						|
	struct cardinfo *card = disk->private_data;
 | 
						|
	set_capacity(disk, card->mm_size << 1);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 | 
						|
{
 | 
						|
	struct cardinfo *card = bdev->bd_disk->private_data;
 | 
						|
	int size = card->mm_size * (1024 / MM_HARDSECT);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * get geometry: we have to fake one...  trim the size to a
 | 
						|
	 * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
 | 
						|
	 * whatever cylinders.
 | 
						|
	 */
 | 
						|
	geo->heads     = 64;
 | 
						|
	geo->sectors   = 32;
 | 
						|
	geo->cylinders = size / (geo->heads * geo->sectors);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct block_device_operations mm_fops = {
 | 
						|
	.owner		= THIS_MODULE,
 | 
						|
	.getgeo		= mm_getgeo,
 | 
						|
	.revalidate_disk = mm_revalidate,
 | 
						|
};
 | 
						|
 | 
						|
static int mm_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
 | 
						|
{
 | 
						|
	int ret = -ENODEV;
 | 
						|
	struct cardinfo *card = &cards[num_cards];
 | 
						|
	unsigned char	mem_present;
 | 
						|
	unsigned char	batt_status;
 | 
						|
	unsigned int	saved_bar, data;
 | 
						|
	unsigned long	csr_base;
 | 
						|
	unsigned long	csr_len;
 | 
						|
	int		magic_number;
 | 
						|
	static int	printed_version;
 | 
						|
 | 
						|
	if (!printed_version++)
 | 
						|
		printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
 | 
						|
 | 
						|
	ret = pci_enable_device(dev);
 | 
						|
	if (ret)
 | 
						|
		return ret;
 | 
						|
 | 
						|
	pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
 | 
						|
	pci_set_master(dev);
 | 
						|
 | 
						|
	card->dev         = dev;
 | 
						|
 | 
						|
	csr_base = pci_resource_start(dev, 0);
 | 
						|
	csr_len  = pci_resource_len(dev, 0);
 | 
						|
	if (!csr_base || !csr_len)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	dev_printk(KERN_INFO, &dev->dev,
 | 
						|
	  "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
 | 
						|
 | 
						|
	if (pci_set_dma_mask(dev, DMA_BIT_MASK(64)) &&
 | 
						|
	    pci_set_dma_mask(dev, DMA_BIT_MASK(32))) {
 | 
						|
		dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
 | 
						|
		return  -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
	ret = pci_request_regions(dev, DRIVER_NAME);
 | 
						|
	if (ret) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"Unable to request memory region\n");
 | 
						|
		goto failed_req_csr;
 | 
						|
	}
 | 
						|
 | 
						|
	card->csr_remap = ioremap_nocache(csr_base, csr_len);
 | 
						|
	if (!card->csr_remap) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"Unable to remap memory region\n");
 | 
						|
		ret = -ENOMEM;
 | 
						|
 | 
						|
		goto failed_remap_csr;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_printk(KERN_INFO, &card->dev->dev,
 | 
						|
		"CSR 0x%08lx -> 0x%p (0x%lx)\n",
 | 
						|
	       csr_base, card->csr_remap, csr_len);
 | 
						|
 | 
						|
	switch (card->dev->device) {
 | 
						|
	case 0x5415:
 | 
						|
		card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
 | 
						|
		magic_number = 0x59;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0x5425:
 | 
						|
		card->flags |= UM_FLAG_NO_BYTE_STATUS;
 | 
						|
		magic_number = 0x5C;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0x6155:
 | 
						|
		card->flags |= UM_FLAG_NO_BYTE_STATUS |
 | 
						|
				UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
 | 
						|
		magic_number = 0x99;
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		magic_number = 0x100;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
 | 
						|
		ret = -ENOMEM;
 | 
						|
		goto failed_magic;
 | 
						|
	}
 | 
						|
 | 
						|
	card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
 | 
						|
						PAGE_SIZE * 2,
 | 
						|
						&card->mm_pages[0].page_dma);
 | 
						|
	card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
 | 
						|
						PAGE_SIZE * 2,
 | 
						|
						&card->mm_pages[1].page_dma);
 | 
						|
	if (card->mm_pages[0].desc == NULL ||
 | 
						|
	    card->mm_pages[1].desc == NULL) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
 | 
						|
		goto failed_alloc;
 | 
						|
	}
 | 
						|
	reset_page(&card->mm_pages[0]);
 | 
						|
	reset_page(&card->mm_pages[1]);
 | 
						|
	card->Ready = 0;	/* page 0 is ready */
 | 
						|
	card->Active = -1;	/* no page is active */
 | 
						|
	card->bio = NULL;
 | 
						|
	card->biotail = &card->bio;
 | 
						|
 | 
						|
	card->queue = blk_alloc_queue(GFP_KERNEL);
 | 
						|
	if (!card->queue)
 | 
						|
		goto failed_alloc;
 | 
						|
 | 
						|
	blk_queue_make_request(card->queue, mm_make_request);
 | 
						|
	card->queue->queue_lock = &card->lock;
 | 
						|
	card->queue->queuedata = card;
 | 
						|
 | 
						|
	tasklet_init(&card->tasklet, process_page, (unsigned long)card);
 | 
						|
 | 
						|
	card->check_batteries = 0;
 | 
						|
 | 
						|
	mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
 | 
						|
	switch (mem_present) {
 | 
						|
	case MEM_128_MB:
 | 
						|
		card->mm_size = 1024 * 128;
 | 
						|
		break;
 | 
						|
	case MEM_256_MB:
 | 
						|
		card->mm_size = 1024 * 256;
 | 
						|
		break;
 | 
						|
	case MEM_512_MB:
 | 
						|
		card->mm_size = 1024 * 512;
 | 
						|
		break;
 | 
						|
	case MEM_1_GB:
 | 
						|
		card->mm_size = 1024 * 1024;
 | 
						|
		break;
 | 
						|
	case MEM_2_GB:
 | 
						|
		card->mm_size = 1024 * 2048;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		card->mm_size = 0;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Clear the LED's we control */
 | 
						|
	set_led(card, LED_REMOVE, LED_OFF);
 | 
						|
	set_led(card, LED_FAULT, LED_OFF);
 | 
						|
 | 
						|
	batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
 | 
						|
 | 
						|
	card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
 | 
						|
	card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
 | 
						|
	card->battery[0].last_change = card->battery[1].last_change = jiffies;
 | 
						|
 | 
						|
	if (card->flags & UM_FLAG_NO_BATT)
 | 
						|
		dev_printk(KERN_INFO, &card->dev->dev,
 | 
						|
			"Size %d KB\n", card->mm_size);
 | 
						|
	else {
 | 
						|
		dev_printk(KERN_INFO, &card->dev->dev,
 | 
						|
			"Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
 | 
						|
		       card->mm_size,
 | 
						|
		       batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
 | 
						|
		       card->battery[0].good ? "OK" : "FAILURE",
 | 
						|
		       batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
 | 
						|
		       card->battery[1].good ? "OK" : "FAILURE");
 | 
						|
 | 
						|
		set_fault_to_battery_status(card);
 | 
						|
	}
 | 
						|
 | 
						|
	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
 | 
						|
	data = 0xffffffff;
 | 
						|
	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
 | 
						|
	pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
 | 
						|
	pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
 | 
						|
	data &= 0xfffffff0;
 | 
						|
	data = ~data;
 | 
						|
	data += 1;
 | 
						|
 | 
						|
	if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
 | 
						|
			card)) {
 | 
						|
		dev_printk(KERN_ERR, &card->dev->dev,
 | 
						|
			"Unable to allocate IRQ\n");
 | 
						|
		ret = -ENODEV;
 | 
						|
		goto failed_req_irq;
 | 
						|
	}
 | 
						|
 | 
						|
	dev_printk(KERN_INFO, &card->dev->dev,
 | 
						|
		"Window size %d bytes, IRQ %d\n", data, dev->irq);
 | 
						|
 | 
						|
	spin_lock_init(&card->lock);
 | 
						|
 | 
						|
	pci_set_drvdata(dev, card);
 | 
						|
 | 
						|
	if (pci_write_cmd != 0x0F) 	/* If not Memory Write & Invalidate */
 | 
						|
		pci_write_cmd = 0x07;	/* then Memory Write command */
 | 
						|
 | 
						|
	if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
 | 
						|
		unsigned short cfg_command;
 | 
						|
		pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
 | 
						|
		cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
 | 
						|
		pci_write_config_word(dev, PCI_COMMAND, cfg_command);
 | 
						|
	}
 | 
						|
	pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
 | 
						|
 | 
						|
	num_cards++;
 | 
						|
 | 
						|
	if (!get_userbit(card, MEMORY_INITIALIZED)) {
 | 
						|
		dev_printk(KERN_INFO, &card->dev->dev,
 | 
						|
		  "memory NOT initialized. Consider over-writing whole device.\n");
 | 
						|
		card->init_size = 0;
 | 
						|
	} else {
 | 
						|
		dev_printk(KERN_INFO, &card->dev->dev,
 | 
						|
			"memory already initialized\n");
 | 
						|
		card->init_size = card->mm_size;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Enable ECC */
 | 
						|
	writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
 failed_req_irq:
 | 
						|
 failed_alloc:
 | 
						|
	if (card->mm_pages[0].desc)
 | 
						|
		pci_free_consistent(card->dev, PAGE_SIZE*2,
 | 
						|
				    card->mm_pages[0].desc,
 | 
						|
				    card->mm_pages[0].page_dma);
 | 
						|
	if (card->mm_pages[1].desc)
 | 
						|
		pci_free_consistent(card->dev, PAGE_SIZE*2,
 | 
						|
				    card->mm_pages[1].desc,
 | 
						|
				    card->mm_pages[1].page_dma);
 | 
						|
 failed_magic:
 | 
						|
	iounmap(card->csr_remap);
 | 
						|
 failed_remap_csr:
 | 
						|
	pci_release_regions(dev);
 | 
						|
 failed_req_csr:
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void mm_pci_remove(struct pci_dev *dev)
 | 
						|
{
 | 
						|
	struct cardinfo *card = pci_get_drvdata(dev);
 | 
						|
 | 
						|
	tasklet_kill(&card->tasklet);
 | 
						|
	free_irq(dev->irq, card);
 | 
						|
	iounmap(card->csr_remap);
 | 
						|
 | 
						|
	if (card->mm_pages[0].desc)
 | 
						|
		pci_free_consistent(card->dev, PAGE_SIZE*2,
 | 
						|
				    card->mm_pages[0].desc,
 | 
						|
				    card->mm_pages[0].page_dma);
 | 
						|
	if (card->mm_pages[1].desc)
 | 
						|
		pci_free_consistent(card->dev, PAGE_SIZE*2,
 | 
						|
				    card->mm_pages[1].desc,
 | 
						|
				    card->mm_pages[1].page_dma);
 | 
						|
	blk_cleanup_queue(card->queue);
 | 
						|
 | 
						|
	pci_release_regions(dev);
 | 
						|
	pci_disable_device(dev);
 | 
						|
}
 | 
						|
 | 
						|
static const struct pci_device_id mm_pci_ids[] = {
 | 
						|
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
 | 
						|
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
 | 
						|
    {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
 | 
						|
    {
 | 
						|
	.vendor	=	0x8086,
 | 
						|
	.device	=	0xB555,
 | 
						|
	.subvendor =	0x1332,
 | 
						|
	.subdevice =	0x5460,
 | 
						|
	.class =	0x050000,
 | 
						|
	.class_mask =	0,
 | 
						|
    }, { /* end: all zeroes */ }
 | 
						|
};
 | 
						|
 | 
						|
MODULE_DEVICE_TABLE(pci, mm_pci_ids);
 | 
						|
 | 
						|
static struct pci_driver mm_pci_driver = {
 | 
						|
	.name		= DRIVER_NAME,
 | 
						|
	.id_table	= mm_pci_ids,
 | 
						|
	.probe		= mm_pci_probe,
 | 
						|
	.remove		= mm_pci_remove,
 | 
						|
};
 | 
						|
 | 
						|
static int __init mm_init(void)
 | 
						|
{
 | 
						|
	int retval, i;
 | 
						|
	int err;
 | 
						|
 | 
						|
	retval = pci_register_driver(&mm_pci_driver);
 | 
						|
	if (retval)
 | 
						|
		return -ENOMEM;
 | 
						|
 | 
						|
	err = major_nr = register_blkdev(0, DRIVER_NAME);
 | 
						|
	if (err < 0) {
 | 
						|
		pci_unregister_driver(&mm_pci_driver);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < num_cards; i++) {
 | 
						|
		mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
 | 
						|
		if (!mm_gendisk[i])
 | 
						|
			goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < num_cards; i++) {
 | 
						|
		struct gendisk *disk = mm_gendisk[i];
 | 
						|
		sprintf(disk->disk_name, "umem%c", 'a'+i);
 | 
						|
		spin_lock_init(&cards[i].lock);
 | 
						|
		disk->major = major_nr;
 | 
						|
		disk->first_minor  = i << MM_SHIFT;
 | 
						|
		disk->fops = &mm_fops;
 | 
						|
		disk->private_data = &cards[i];
 | 
						|
		disk->queue = cards[i].queue;
 | 
						|
		set_capacity(disk, cards[i].mm_size << 1);
 | 
						|
		add_disk(disk);
 | 
						|
	}
 | 
						|
 | 
						|
	init_battery_timer();
 | 
						|
	printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
 | 
						|
/* printk("mm_init: Done. 10-19-01 9:00\n"); */
 | 
						|
	return 0;
 | 
						|
 | 
						|
out:
 | 
						|
	pci_unregister_driver(&mm_pci_driver);
 | 
						|
	unregister_blkdev(major_nr, DRIVER_NAME);
 | 
						|
	while (i--)
 | 
						|
		put_disk(mm_gendisk[i]);
 | 
						|
	return -ENOMEM;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit mm_cleanup(void)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	del_battery_timer();
 | 
						|
 | 
						|
	for (i = 0; i < num_cards ; i++) {
 | 
						|
		del_gendisk(mm_gendisk[i]);
 | 
						|
		put_disk(mm_gendisk[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	pci_unregister_driver(&mm_pci_driver);
 | 
						|
 | 
						|
	unregister_blkdev(major_nr, DRIVER_NAME);
 | 
						|
}
 | 
						|
 | 
						|
module_init(mm_init);
 | 
						|
module_exit(mm_cleanup);
 | 
						|
 | 
						|
MODULE_AUTHOR(DRIVER_AUTHOR);
 | 
						|
MODULE_DESCRIPTION(DRIVER_DESC);
 | 
						|
MODULE_LICENSE("GPL");
 |