mirror of
https://kernel.googlesource.com/pub/scm/linux/kernel/git/stable/linux-stable.git
synced 2025-09-22 16:16:24 +10:00
Currently, CMA manages one range of physically contiguous memory. Creation of larger CMA areas with hugetlb_cma may run in to gaps in physical memory, so that they are not able to allocate that contiguous physical range from memblock when creating the CMA area. This can happen, for example, on an AMD system with > 1TB of memory, where there will be a gap just below the 1TB (40bit DMA) line. If you have set aside most of memory for potential hugetlb CMA allocation, cma_declare_contiguous_nid will fail. hugetlb_cma doesn't need the entire area to be one physically contiguous range. It just cares about being able to get physically contiguous chunks of a certain size (e.g. 1G), and it is fine to have the CMA area backed by multiple physical ranges, as long as it gets 1G contiguous allocations. Multi-range support is implemented by introducing an array of ranges, instead of just one big one. Each range has its own bitmap. Effectively, the allocate and release operations work as before, just per-range. So, instead of going through one large bitmap, they now go through a number of smaller ones. The maximum number of supported ranges is 8, as defined in CMA_MAX_RANGES. Since some current users of CMA expect a CMA area to just use one physically contiguous range, only allow for multiple ranges if a new interface, cma_declare_contiguous_nid_multi, is used. The other interfaces will work like before, creating only CMA areas with 1 range. cma_declare_contiguous_nid_multi works as follows, mimicking the default "bottom-up, above 4G" reservation approach: 0) Try cma_declare_contiguous_nid, which will use only one region. If this succeeds, return. This makes sure that for all the cases that currently work, the behavior remains unchanged even if the caller switches from cma_declare_contiguous_nid to cma_declare_contiguous_nid_multi. 1) Select the largest free memblock ranges above 4G, with a maximum number of CMA_MAX_RANGES. 2) If we did not find at most CMA_MAX_RANGES that add up to the total size requested, return -ENOMEM. 3) Sort the selected ranges by base address. 4) Reserve them bottom-up until we get what we wanted. Link: https://lkml.kernel.org/r/20250228182928.2645936-3-fvdl@google.com Signed-off-by: Frank van der Linden <fvdl@google.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Alexander Gordeev <agordeev@linux.ibm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dan Carpenter <dan.carpenter@linaro.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Madhavan Srinivasan <maddy@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Muchun Song <muchun.song@linux.dev> Cc: Oscar Salvador <osalvador@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin (Cruise) <roman.gushchin@linux.dev> Cc: Usama Arif <usamaarif642@gmail.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Yu Zhao <yuzhao@google.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
981 lines
25 KiB
C
981 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Contiguous Memory Allocator
|
|
*
|
|
* Copyright (c) 2010-2011 by Samsung Electronics.
|
|
* Copyright IBM Corporation, 2013
|
|
* Copyright LG Electronics Inc., 2014
|
|
* Written by:
|
|
* Marek Szyprowski <m.szyprowski@samsung.com>
|
|
* Michal Nazarewicz <mina86@mina86.com>
|
|
* Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
|
|
* Joonsoo Kim <iamjoonsoo.kim@lge.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "cma: " fmt
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/err.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/cma.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <trace/events/cma.h>
|
|
|
|
#include "internal.h"
|
|
#include "cma.h"
|
|
|
|
struct cma cma_areas[MAX_CMA_AREAS];
|
|
unsigned int cma_area_count;
|
|
static DEFINE_MUTEX(cma_mutex);
|
|
|
|
static int __init __cma_declare_contiguous_nid(phys_addr_t base,
|
|
phys_addr_t size, phys_addr_t limit,
|
|
phys_addr_t alignment, unsigned int order_per_bit,
|
|
bool fixed, const char *name, struct cma **res_cma,
|
|
int nid);
|
|
|
|
phys_addr_t cma_get_base(const struct cma *cma)
|
|
{
|
|
WARN_ON_ONCE(cma->nranges != 1);
|
|
return PFN_PHYS(cma->ranges[0].base_pfn);
|
|
}
|
|
|
|
unsigned long cma_get_size(const struct cma *cma)
|
|
{
|
|
return cma->count << PAGE_SHIFT;
|
|
}
|
|
|
|
const char *cma_get_name(const struct cma *cma)
|
|
{
|
|
return cma->name;
|
|
}
|
|
|
|
static unsigned long cma_bitmap_aligned_mask(const struct cma *cma,
|
|
unsigned int align_order)
|
|
{
|
|
if (align_order <= cma->order_per_bit)
|
|
return 0;
|
|
return (1UL << (align_order - cma->order_per_bit)) - 1;
|
|
}
|
|
|
|
/*
|
|
* Find the offset of the base PFN from the specified align_order.
|
|
* The value returned is represented in order_per_bits.
|
|
*/
|
|
static unsigned long cma_bitmap_aligned_offset(const struct cma *cma,
|
|
const struct cma_memrange *cmr,
|
|
unsigned int align_order)
|
|
{
|
|
return (cmr->base_pfn & ((1UL << align_order) - 1))
|
|
>> cma->order_per_bit;
|
|
}
|
|
|
|
static unsigned long cma_bitmap_pages_to_bits(const struct cma *cma,
|
|
unsigned long pages)
|
|
{
|
|
return ALIGN(pages, 1UL << cma->order_per_bit) >> cma->order_per_bit;
|
|
}
|
|
|
|
static void cma_clear_bitmap(struct cma *cma, const struct cma_memrange *cmr,
|
|
unsigned long pfn, unsigned long count)
|
|
{
|
|
unsigned long bitmap_no, bitmap_count;
|
|
unsigned long flags;
|
|
|
|
bitmap_no = (pfn - cmr->base_pfn) >> cma->order_per_bit;
|
|
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
|
|
|
|
spin_lock_irqsave(&cma->lock, flags);
|
|
bitmap_clear(cmr->bitmap, bitmap_no, bitmap_count);
|
|
cma->available_count += count;
|
|
spin_unlock_irqrestore(&cma->lock, flags);
|
|
}
|
|
|
|
static void __init cma_activate_area(struct cma *cma)
|
|
{
|
|
unsigned long pfn, base_pfn;
|
|
int allocrange, r;
|
|
struct zone *zone;
|
|
struct cma_memrange *cmr;
|
|
|
|
for (allocrange = 0; allocrange < cma->nranges; allocrange++) {
|
|
cmr = &cma->ranges[allocrange];
|
|
cmr->bitmap = bitmap_zalloc(cma_bitmap_maxno(cma, cmr),
|
|
GFP_KERNEL);
|
|
if (!cmr->bitmap)
|
|
goto cleanup;
|
|
}
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
base_pfn = cmr->base_pfn;
|
|
|
|
/*
|
|
* alloc_contig_range() requires the pfn range specified
|
|
* to be in the same zone. Simplify by forcing the entire
|
|
* CMA resv range to be in the same zone.
|
|
*/
|
|
WARN_ON_ONCE(!pfn_valid(base_pfn));
|
|
zone = page_zone(pfn_to_page(base_pfn));
|
|
for (pfn = base_pfn + 1; pfn < base_pfn + cmr->count; pfn++) {
|
|
WARN_ON_ONCE(!pfn_valid(pfn));
|
|
if (page_zone(pfn_to_page(pfn)) != zone)
|
|
goto cleanup;
|
|
}
|
|
|
|
for (pfn = base_pfn; pfn < base_pfn + cmr->count;
|
|
pfn += pageblock_nr_pages)
|
|
init_cma_reserved_pageblock(pfn_to_page(pfn));
|
|
}
|
|
|
|
spin_lock_init(&cma->lock);
|
|
|
|
#ifdef CONFIG_CMA_DEBUGFS
|
|
INIT_HLIST_HEAD(&cma->mem_head);
|
|
spin_lock_init(&cma->mem_head_lock);
|
|
#endif
|
|
|
|
return;
|
|
|
|
cleanup:
|
|
for (r = 0; r < allocrange; r++)
|
|
bitmap_free(cma->ranges[r].bitmap);
|
|
|
|
/* Expose all pages to the buddy, they are useless for CMA. */
|
|
if (!cma->reserve_pages_on_error) {
|
|
for (r = 0; r < allocrange; r++) {
|
|
cmr = &cma->ranges[r];
|
|
for (pfn = cmr->base_pfn;
|
|
pfn < cmr->base_pfn + cmr->count;
|
|
pfn++)
|
|
free_reserved_page(pfn_to_page(pfn));
|
|
}
|
|
}
|
|
totalcma_pages -= cma->count;
|
|
cma->available_count = cma->count = 0;
|
|
pr_err("CMA area %s could not be activated\n", cma->name);
|
|
}
|
|
|
|
static int __init cma_init_reserved_areas(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cma_area_count; i++)
|
|
cma_activate_area(&cma_areas[i]);
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(cma_init_reserved_areas);
|
|
|
|
void __init cma_reserve_pages_on_error(struct cma *cma)
|
|
{
|
|
cma->reserve_pages_on_error = true;
|
|
}
|
|
|
|
static int __init cma_new_area(const char *name, phys_addr_t size,
|
|
unsigned int order_per_bit,
|
|
struct cma **res_cma)
|
|
{
|
|
struct cma *cma;
|
|
|
|
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
|
|
pr_err("Not enough slots for CMA reserved regions!\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* Each reserved area must be initialised later, when more kernel
|
|
* subsystems (like slab allocator) are available.
|
|
*/
|
|
cma = &cma_areas[cma_area_count];
|
|
cma_area_count++;
|
|
|
|
if (name)
|
|
snprintf(cma->name, CMA_MAX_NAME, "%s", name);
|
|
else
|
|
snprintf(cma->name, CMA_MAX_NAME, "cma%d\n", cma_area_count);
|
|
|
|
cma->available_count = cma->count = size >> PAGE_SHIFT;
|
|
cma->order_per_bit = order_per_bit;
|
|
*res_cma = cma;
|
|
totalcma_pages += cma->count;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init cma_drop_area(struct cma *cma)
|
|
{
|
|
totalcma_pages -= cma->count;
|
|
cma_area_count--;
|
|
}
|
|
|
|
/**
|
|
* cma_init_reserved_mem() - create custom contiguous area from reserved memory
|
|
* @base: Base address of the reserved area
|
|
* @size: Size of the reserved area (in bytes),
|
|
* @order_per_bit: Order of pages represented by one bit on bitmap.
|
|
* @name: The name of the area. If this parameter is NULL, the name of
|
|
* the area will be set to "cmaN", where N is a running counter of
|
|
* used areas.
|
|
* @res_cma: Pointer to store the created cma region.
|
|
*
|
|
* This function creates custom contiguous area from already reserved memory.
|
|
*/
|
|
int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size,
|
|
unsigned int order_per_bit,
|
|
const char *name,
|
|
struct cma **res_cma)
|
|
{
|
|
struct cma *cma;
|
|
int ret;
|
|
|
|
/* Sanity checks */
|
|
if (!size || !memblock_is_region_reserved(base, size))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* CMA uses CMA_MIN_ALIGNMENT_BYTES as alignment requirement which
|
|
* needs pageblock_order to be initialized. Let's enforce it.
|
|
*/
|
|
if (!pageblock_order) {
|
|
pr_err("pageblock_order not yet initialized. Called during early boot?\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* ensure minimal alignment required by mm core */
|
|
if (!IS_ALIGNED(base | size, CMA_MIN_ALIGNMENT_BYTES))
|
|
return -EINVAL;
|
|
|
|
ret = cma_new_area(name, size, order_per_bit, &cma);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
cma->ranges[0].base_pfn = PFN_DOWN(base);
|
|
cma->ranges[0].count = cma->count;
|
|
cma->nranges = 1;
|
|
|
|
*res_cma = cma;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Structure used while walking physical memory ranges and finding out
|
|
* which one(s) to use for a CMA area.
|
|
*/
|
|
struct cma_init_memrange {
|
|
phys_addr_t base;
|
|
phys_addr_t size;
|
|
struct list_head list;
|
|
};
|
|
|
|
/*
|
|
* Work array used during CMA initialization.
|
|
*/
|
|
static struct cma_init_memrange memranges[CMA_MAX_RANGES] __initdata;
|
|
|
|
static bool __init revsizecmp(struct cma_init_memrange *mlp,
|
|
struct cma_init_memrange *mrp)
|
|
{
|
|
return mlp->size > mrp->size;
|
|
}
|
|
|
|
static bool __init basecmp(struct cma_init_memrange *mlp,
|
|
struct cma_init_memrange *mrp)
|
|
{
|
|
return mlp->base < mrp->base;
|
|
}
|
|
|
|
/*
|
|
* Helper function to create sorted lists.
|
|
*/
|
|
static void __init list_insert_sorted(
|
|
struct list_head *ranges,
|
|
struct cma_init_memrange *mrp,
|
|
bool (*cmp)(struct cma_init_memrange *lh, struct cma_init_memrange *rh))
|
|
{
|
|
struct list_head *mp;
|
|
struct cma_init_memrange *mlp;
|
|
|
|
if (list_empty(ranges))
|
|
list_add(&mrp->list, ranges);
|
|
else {
|
|
list_for_each(mp, ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
if (cmp(mlp, mrp))
|
|
break;
|
|
}
|
|
__list_add(&mrp->list, mlp->list.prev, &mlp->list);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create CMA areas with a total size of @total_size. A normal allocation
|
|
* for one area is tried first. If that fails, the biggest memblock
|
|
* ranges above 4G are selected, and allocated bottom up.
|
|
*
|
|
* The complexity here is not great, but this function will only be
|
|
* called during boot, and the lists operated on have fewer than
|
|
* CMA_MAX_RANGES elements (default value: 8).
|
|
*/
|
|
int __init cma_declare_contiguous_multi(phys_addr_t total_size,
|
|
phys_addr_t align, unsigned int order_per_bit,
|
|
const char *name, struct cma **res_cma, int nid)
|
|
{
|
|
phys_addr_t start, end;
|
|
phys_addr_t size, sizesum, sizeleft;
|
|
struct cma_init_memrange *mrp, *mlp, *failed;
|
|
struct cma_memrange *cmrp;
|
|
LIST_HEAD(ranges);
|
|
LIST_HEAD(final_ranges);
|
|
struct list_head *mp, *next;
|
|
int ret, nr = 1;
|
|
u64 i;
|
|
struct cma *cma;
|
|
|
|
/*
|
|
* First, try it the normal way, producing just one range.
|
|
*/
|
|
ret = __cma_declare_contiguous_nid(0, total_size, 0, align,
|
|
order_per_bit, false, name, res_cma, nid);
|
|
if (ret != -ENOMEM)
|
|
goto out;
|
|
|
|
/*
|
|
* Couldn't find one range that fits our needs, so try multiple
|
|
* ranges.
|
|
*
|
|
* No need to do the alignment checks here, the call to
|
|
* cma_declare_contiguous_nid above would have caught
|
|
* any issues. With the checks, we know that:
|
|
*
|
|
* - @align is a power of 2
|
|
* - @align is >= pageblock alignment
|
|
* - @size is aligned to @align and to @order_per_bit
|
|
*
|
|
* So, as long as we create ranges that have a base
|
|
* aligned to @align, and a size that is aligned to
|
|
* both @align and @order_to_bit, things will work out.
|
|
*/
|
|
nr = 0;
|
|
sizesum = 0;
|
|
failed = NULL;
|
|
|
|
ret = cma_new_area(name, total_size, order_per_bit, &cma);
|
|
if (ret != 0)
|
|
goto out;
|
|
|
|
align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
|
|
/*
|
|
* Create a list of ranges above 4G, largest range first.
|
|
*/
|
|
for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &start, &end, NULL) {
|
|
if (upper_32_bits(start) == 0)
|
|
continue;
|
|
|
|
start = ALIGN(start, align);
|
|
if (start >= end)
|
|
continue;
|
|
|
|
end = ALIGN_DOWN(end, align);
|
|
if (end <= start)
|
|
continue;
|
|
|
|
size = end - start;
|
|
size = ALIGN_DOWN(size, (PAGE_SIZE << order_per_bit));
|
|
if (!size)
|
|
continue;
|
|
sizesum += size;
|
|
|
|
pr_debug("consider %016llx - %016llx\n", (u64)start, (u64)end);
|
|
|
|
/*
|
|
* If we don't yet have used the maximum number of
|
|
* areas, grab a new one.
|
|
*
|
|
* If we can't use anymore, see if this range is not
|
|
* smaller than the smallest one already recorded. If
|
|
* not, re-use the smallest element.
|
|
*/
|
|
if (nr < CMA_MAX_RANGES)
|
|
mrp = &memranges[nr++];
|
|
else {
|
|
mrp = list_last_entry(&ranges,
|
|
struct cma_init_memrange, list);
|
|
if (size < mrp->size)
|
|
continue;
|
|
list_del(&mrp->list);
|
|
sizesum -= mrp->size;
|
|
pr_debug("deleted %016llx - %016llx from the list\n",
|
|
(u64)mrp->base, (u64)mrp->base + size);
|
|
}
|
|
mrp->base = start;
|
|
mrp->size = size;
|
|
|
|
/*
|
|
* Now do a sorted insert.
|
|
*/
|
|
list_insert_sorted(&ranges, mrp, revsizecmp);
|
|
pr_debug("added %016llx - %016llx to the list\n",
|
|
(u64)mrp->base, (u64)mrp->base + size);
|
|
pr_debug("total size now %llu\n", (u64)sizesum);
|
|
}
|
|
|
|
/*
|
|
* There is not enough room in the CMA_MAX_RANGES largest
|
|
* ranges, so bail out.
|
|
*/
|
|
if (sizesum < total_size) {
|
|
cma_drop_area(cma);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Found ranges that provide enough combined space.
|
|
* Now, sorted them by address, smallest first, because we
|
|
* want to mimic a bottom-up memblock allocation.
|
|
*/
|
|
sizesum = 0;
|
|
list_for_each_safe(mp, next, &ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
list_del(mp);
|
|
list_insert_sorted(&final_ranges, mlp, basecmp);
|
|
sizesum += mlp->size;
|
|
if (sizesum >= total_size)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Walk the final list, and add a CMA range for
|
|
* each range, possibly not using the last one fully.
|
|
*/
|
|
nr = 0;
|
|
sizeleft = total_size;
|
|
list_for_each(mp, &final_ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
size = min(sizeleft, mlp->size);
|
|
if (memblock_reserve(mlp->base, size)) {
|
|
/*
|
|
* Unexpected error. Could go on to
|
|
* the next one, but just abort to
|
|
* be safe.
|
|
*/
|
|
failed = mlp;
|
|
break;
|
|
}
|
|
|
|
pr_debug("created region %d: %016llx - %016llx\n",
|
|
nr, (u64)mlp->base, (u64)mlp->base + size);
|
|
cmrp = &cma->ranges[nr++];
|
|
cmrp->base_pfn = PHYS_PFN(mlp->base);
|
|
cmrp->count = size >> PAGE_SHIFT;
|
|
|
|
sizeleft -= size;
|
|
if (sizeleft == 0)
|
|
break;
|
|
}
|
|
|
|
if (failed) {
|
|
list_for_each(mp, &final_ranges) {
|
|
mlp = list_entry(mp, struct cma_init_memrange, list);
|
|
if (mlp == failed)
|
|
break;
|
|
memblock_phys_free(mlp->base, mlp->size);
|
|
}
|
|
cma_drop_area(cma);
|
|
ret = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
cma->nranges = nr;
|
|
*res_cma = cma;
|
|
|
|
out:
|
|
if (ret != 0)
|
|
pr_err("Failed to reserve %lu MiB\n",
|
|
(unsigned long)total_size / SZ_1M);
|
|
else
|
|
pr_info("Reserved %lu MiB in %d range%s\n",
|
|
(unsigned long)total_size / SZ_1M, nr,
|
|
nr > 1 ? "s" : "");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cma_declare_contiguous_nid() - reserve custom contiguous area
|
|
* @base: Base address of the reserved area optional, use 0 for any
|
|
* @size: Size of the reserved area (in bytes),
|
|
* @limit: End address of the reserved memory (optional, 0 for any).
|
|
* @alignment: Alignment for the CMA area, should be power of 2 or zero
|
|
* @order_per_bit: Order of pages represented by one bit on bitmap.
|
|
* @fixed: hint about where to place the reserved area
|
|
* @name: The name of the area. See function cma_init_reserved_mem()
|
|
* @res_cma: Pointer to store the created cma region.
|
|
* @nid: nid of the free area to find, %NUMA_NO_NODE for any node
|
|
*
|
|
* This function reserves memory from early allocator. It should be
|
|
* called by arch specific code once the early allocator (memblock or bootmem)
|
|
* has been activated and all other subsystems have already allocated/reserved
|
|
* memory. This function allows to create custom reserved areas.
|
|
*
|
|
* If @fixed is true, reserve contiguous area at exactly @base. If false,
|
|
* reserve in range from @base to @limit.
|
|
*/
|
|
int __init cma_declare_contiguous_nid(phys_addr_t base,
|
|
phys_addr_t size, phys_addr_t limit,
|
|
phys_addr_t alignment, unsigned int order_per_bit,
|
|
bool fixed, const char *name, struct cma **res_cma,
|
|
int nid)
|
|
{
|
|
int ret;
|
|
|
|
ret = __cma_declare_contiguous_nid(base, size, limit, alignment,
|
|
order_per_bit, fixed, name, res_cma, nid);
|
|
if (ret != 0)
|
|
pr_err("Failed to reserve %ld MiB\n",
|
|
(unsigned long)size / SZ_1M);
|
|
else
|
|
pr_info("Reserved %ld MiB at %pa\n",
|
|
(unsigned long)size / SZ_1M, &base);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __init __cma_declare_contiguous_nid(phys_addr_t base,
|
|
phys_addr_t size, phys_addr_t limit,
|
|
phys_addr_t alignment, unsigned int order_per_bit,
|
|
bool fixed, const char *name, struct cma **res_cma,
|
|
int nid)
|
|
{
|
|
phys_addr_t memblock_end = memblock_end_of_DRAM();
|
|
phys_addr_t highmem_start;
|
|
int ret;
|
|
|
|
/*
|
|
* We can't use __pa(high_memory) directly, since high_memory
|
|
* isn't a valid direct map VA, and DEBUG_VIRTUAL will (validly)
|
|
* complain. Find the boundary by adding one to the last valid
|
|
* address.
|
|
*/
|
|
highmem_start = __pa(high_memory - 1) + 1;
|
|
pr_debug("%s(size %pa, base %pa, limit %pa alignment %pa)\n",
|
|
__func__, &size, &base, &limit, &alignment);
|
|
|
|
if (cma_area_count == ARRAY_SIZE(cma_areas)) {
|
|
pr_err("Not enough slots for CMA reserved regions!\n");
|
|
return -ENOSPC;
|
|
}
|
|
|
|
if (!size)
|
|
return -EINVAL;
|
|
|
|
if (alignment && !is_power_of_2(alignment))
|
|
return -EINVAL;
|
|
|
|
if (!IS_ENABLED(CONFIG_NUMA))
|
|
nid = NUMA_NO_NODE;
|
|
|
|
/* Sanitise input arguments. */
|
|
alignment = max_t(phys_addr_t, alignment, CMA_MIN_ALIGNMENT_BYTES);
|
|
if (fixed && base & (alignment - 1)) {
|
|
pr_err("Region at %pa must be aligned to %pa bytes\n",
|
|
&base, &alignment);
|
|
return -EINVAL;
|
|
}
|
|
base = ALIGN(base, alignment);
|
|
size = ALIGN(size, alignment);
|
|
limit &= ~(alignment - 1);
|
|
|
|
if (!base)
|
|
fixed = false;
|
|
|
|
/* size should be aligned with order_per_bit */
|
|
if (!IS_ALIGNED(size >> PAGE_SHIFT, 1 << order_per_bit))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If allocating at a fixed base the request region must not cross the
|
|
* low/high memory boundary.
|
|
*/
|
|
if (fixed && base < highmem_start && base + size > highmem_start) {
|
|
pr_err("Region at %pa defined on low/high memory boundary (%pa)\n",
|
|
&base, &highmem_start);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If the limit is unspecified or above the memblock end, its effective
|
|
* value will be the memblock end. Set it explicitly to simplify further
|
|
* checks.
|
|
*/
|
|
if (limit == 0 || limit > memblock_end)
|
|
limit = memblock_end;
|
|
|
|
if (base + size > limit) {
|
|
pr_err("Size (%pa) of region at %pa exceeds limit (%pa)\n",
|
|
&size, &base, &limit);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Reserve memory */
|
|
if (fixed) {
|
|
if (memblock_is_region_reserved(base, size) ||
|
|
memblock_reserve(base, size) < 0) {
|
|
return -EBUSY;
|
|
}
|
|
} else {
|
|
phys_addr_t addr = 0;
|
|
|
|
/*
|
|
* If there is enough memory, try a bottom-up allocation first.
|
|
* It will place the new cma area close to the start of the node
|
|
* and guarantee that the compaction is moving pages out of the
|
|
* cma area and not into it.
|
|
* Avoid using first 4GB to not interfere with constrained zones
|
|
* like DMA/DMA32.
|
|
*/
|
|
#ifdef CONFIG_PHYS_ADDR_T_64BIT
|
|
if (!memblock_bottom_up() && memblock_end >= SZ_4G + size) {
|
|
memblock_set_bottom_up(true);
|
|
addr = memblock_alloc_range_nid(size, alignment, SZ_4G,
|
|
limit, nid, true);
|
|
memblock_set_bottom_up(false);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* All pages in the reserved area must come from the same zone.
|
|
* If the requested region crosses the low/high memory boundary,
|
|
* try allocating from high memory first and fall back to low
|
|
* memory in case of failure.
|
|
*/
|
|
if (!addr && base < highmem_start && limit > highmem_start) {
|
|
addr = memblock_alloc_range_nid(size, alignment,
|
|
highmem_start, limit, nid, true);
|
|
limit = highmem_start;
|
|
}
|
|
|
|
if (!addr) {
|
|
addr = memblock_alloc_range_nid(size, alignment, base,
|
|
limit, nid, true);
|
|
if (!addr)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* kmemleak scans/reads tracked objects for pointers to other
|
|
* objects but this address isn't mapped and accessible
|
|
*/
|
|
kmemleak_ignore_phys(addr);
|
|
base = addr;
|
|
}
|
|
|
|
ret = cma_init_reserved_mem(base, size, order_per_bit, name, res_cma);
|
|
if (ret)
|
|
memblock_phys_free(base, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void cma_debug_show_areas(struct cma *cma)
|
|
{
|
|
unsigned long next_zero_bit, next_set_bit, nr_zero;
|
|
unsigned long start;
|
|
unsigned long nr_part;
|
|
unsigned long nbits;
|
|
int r;
|
|
struct cma_memrange *cmr;
|
|
|
|
spin_lock_irq(&cma->lock);
|
|
pr_info("number of available pages: ");
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
|
|
start = 0;
|
|
nbits = cma_bitmap_maxno(cma, cmr);
|
|
|
|
pr_info("range %d: ", r);
|
|
for (;;) {
|
|
next_zero_bit = find_next_zero_bit(cmr->bitmap,
|
|
nbits, start);
|
|
if (next_zero_bit >= nbits)
|
|
break;
|
|
next_set_bit = find_next_bit(cmr->bitmap, nbits,
|
|
next_zero_bit);
|
|
nr_zero = next_set_bit - next_zero_bit;
|
|
nr_part = nr_zero << cma->order_per_bit;
|
|
pr_cont("%s%lu@%lu", start ? "+" : "", nr_part,
|
|
next_zero_bit);
|
|
start = next_zero_bit + nr_zero;
|
|
}
|
|
pr_info("\n");
|
|
}
|
|
pr_cont("=> %lu free of %lu total pages\n", cma->available_count,
|
|
cma->count);
|
|
spin_unlock_irq(&cma->lock);
|
|
}
|
|
|
|
static int cma_range_alloc(struct cma *cma, struct cma_memrange *cmr,
|
|
unsigned long count, unsigned int align,
|
|
struct page **pagep, gfp_t gfp)
|
|
{
|
|
unsigned long mask, offset;
|
|
unsigned long pfn = -1;
|
|
unsigned long start = 0;
|
|
unsigned long bitmap_maxno, bitmap_no, bitmap_count;
|
|
int ret = -EBUSY;
|
|
struct page *page = NULL;
|
|
|
|
mask = cma_bitmap_aligned_mask(cma, align);
|
|
offset = cma_bitmap_aligned_offset(cma, cmr, align);
|
|
bitmap_maxno = cma_bitmap_maxno(cma, cmr);
|
|
bitmap_count = cma_bitmap_pages_to_bits(cma, count);
|
|
|
|
if (bitmap_count > bitmap_maxno)
|
|
goto out;
|
|
|
|
for (;;) {
|
|
spin_lock_irq(&cma->lock);
|
|
/*
|
|
* If the request is larger than the available number
|
|
* of pages, stop right away.
|
|
*/
|
|
if (count > cma->available_count) {
|
|
spin_unlock_irq(&cma->lock);
|
|
break;
|
|
}
|
|
bitmap_no = bitmap_find_next_zero_area_off(cmr->bitmap,
|
|
bitmap_maxno, start, bitmap_count, mask,
|
|
offset);
|
|
if (bitmap_no >= bitmap_maxno) {
|
|
spin_unlock_irq(&cma->lock);
|
|
break;
|
|
}
|
|
bitmap_set(cmr->bitmap, bitmap_no, bitmap_count);
|
|
cma->available_count -= count;
|
|
/*
|
|
* It's safe to drop the lock here. We've marked this region for
|
|
* our exclusive use. If the migration fails we will take the
|
|
* lock again and unmark it.
|
|
*/
|
|
spin_unlock_irq(&cma->lock);
|
|
|
|
pfn = cmr->base_pfn + (bitmap_no << cma->order_per_bit);
|
|
mutex_lock(&cma_mutex);
|
|
ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp);
|
|
mutex_unlock(&cma_mutex);
|
|
if (ret == 0) {
|
|
page = pfn_to_page(pfn);
|
|
break;
|
|
}
|
|
|
|
cma_clear_bitmap(cma, cmr, pfn, count);
|
|
if (ret != -EBUSY)
|
|
break;
|
|
|
|
pr_debug("%s(): memory range at pfn 0x%lx %p is busy, retrying\n",
|
|
__func__, pfn, pfn_to_page(pfn));
|
|
|
|
trace_cma_alloc_busy_retry(cma->name, pfn, pfn_to_page(pfn),
|
|
count, align);
|
|
/* try again with a bit different memory target */
|
|
start = bitmap_no + mask + 1;
|
|
}
|
|
out:
|
|
*pagep = page;
|
|
return ret;
|
|
}
|
|
|
|
static struct page *__cma_alloc(struct cma *cma, unsigned long count,
|
|
unsigned int align, gfp_t gfp)
|
|
{
|
|
struct page *page = NULL;
|
|
int ret = -ENOMEM, r;
|
|
unsigned long i;
|
|
const char *name = cma ? cma->name : NULL;
|
|
|
|
trace_cma_alloc_start(name, count, align);
|
|
|
|
if (!cma || !cma->count)
|
|
return page;
|
|
|
|
pr_debug("%s(cma %p, name: %s, count %lu, align %d)\n", __func__,
|
|
(void *)cma, cma->name, count, align);
|
|
|
|
if (!count)
|
|
return page;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
page = NULL;
|
|
|
|
ret = cma_range_alloc(cma, &cma->ranges[r], count, align,
|
|
&page, gfp);
|
|
if (ret != -EBUSY || page)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* CMA can allocate multiple page blocks, which results in different
|
|
* blocks being marked with different tags. Reset the tags to ignore
|
|
* those page blocks.
|
|
*/
|
|
if (page) {
|
|
for (i = 0; i < count; i++)
|
|
page_kasan_tag_reset(nth_page(page, i));
|
|
}
|
|
|
|
if (ret && !(gfp & __GFP_NOWARN)) {
|
|
pr_err_ratelimited("%s: %s: alloc failed, req-size: %lu pages, ret: %d\n",
|
|
__func__, cma->name, count, ret);
|
|
cma_debug_show_areas(cma);
|
|
}
|
|
|
|
pr_debug("%s(): returned %p\n", __func__, page);
|
|
trace_cma_alloc_finish(name, page ? page_to_pfn(page) : 0,
|
|
page, count, align, ret);
|
|
if (page) {
|
|
count_vm_event(CMA_ALLOC_SUCCESS);
|
|
cma_sysfs_account_success_pages(cma, count);
|
|
} else {
|
|
count_vm_event(CMA_ALLOC_FAIL);
|
|
cma_sysfs_account_fail_pages(cma, count);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
/**
|
|
* cma_alloc() - allocate pages from contiguous area
|
|
* @cma: Contiguous memory region for which the allocation is performed.
|
|
* @count: Requested number of pages.
|
|
* @align: Requested alignment of pages (in PAGE_SIZE order).
|
|
* @no_warn: Avoid printing message about failed allocation
|
|
*
|
|
* This function allocates part of contiguous memory on specific
|
|
* contiguous memory area.
|
|
*/
|
|
struct page *cma_alloc(struct cma *cma, unsigned long count,
|
|
unsigned int align, bool no_warn)
|
|
{
|
|
return __cma_alloc(cma, count, align, GFP_KERNEL | (no_warn ? __GFP_NOWARN : 0));
|
|
}
|
|
|
|
struct folio *cma_alloc_folio(struct cma *cma, int order, gfp_t gfp)
|
|
{
|
|
struct page *page;
|
|
|
|
if (WARN_ON(!order || !(gfp & __GFP_COMP)))
|
|
return NULL;
|
|
|
|
page = __cma_alloc(cma, 1 << order, order, gfp);
|
|
|
|
return page ? page_folio(page) : NULL;
|
|
}
|
|
|
|
bool cma_pages_valid(struct cma *cma, const struct page *pages,
|
|
unsigned long count)
|
|
{
|
|
unsigned long pfn, end;
|
|
int r;
|
|
struct cma_memrange *cmr;
|
|
bool ret;
|
|
|
|
if (!cma || !pages || count > cma->count)
|
|
return false;
|
|
|
|
pfn = page_to_pfn(pages);
|
|
ret = false;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
end = cmr->base_pfn + cmr->count;
|
|
if (pfn >= cmr->base_pfn && pfn < end) {
|
|
ret = pfn + count <= end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ret)
|
|
pr_debug("%s(page %p, count %lu)\n",
|
|
__func__, (void *)pages, count);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cma_release() - release allocated pages
|
|
* @cma: Contiguous memory region for which the allocation is performed.
|
|
* @pages: Allocated pages.
|
|
* @count: Number of allocated pages.
|
|
*
|
|
* This function releases memory allocated by cma_alloc().
|
|
* It returns false when provided pages do not belong to contiguous area and
|
|
* true otherwise.
|
|
*/
|
|
bool cma_release(struct cma *cma, const struct page *pages,
|
|
unsigned long count)
|
|
{
|
|
struct cma_memrange *cmr;
|
|
unsigned long pfn, end_pfn;
|
|
int r;
|
|
|
|
pr_debug("%s(page %p, count %lu)\n", __func__, (void *)pages, count);
|
|
|
|
if (!cma_pages_valid(cma, pages, count))
|
|
return false;
|
|
|
|
pfn = page_to_pfn(pages);
|
|
end_pfn = pfn + count;
|
|
|
|
for (r = 0; r < cma->nranges; r++) {
|
|
cmr = &cma->ranges[r];
|
|
if (pfn >= cmr->base_pfn &&
|
|
pfn < (cmr->base_pfn + cmr->count)) {
|
|
VM_BUG_ON(end_pfn > cmr->base_pfn + cmr->count);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (r == cma->nranges)
|
|
return false;
|
|
|
|
free_contig_range(pfn, count);
|
|
cma_clear_bitmap(cma, cmr, pfn, count);
|
|
cma_sysfs_account_release_pages(cma, count);
|
|
trace_cma_release(cma->name, pfn, pages, count);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool cma_free_folio(struct cma *cma, const struct folio *folio)
|
|
{
|
|
if (WARN_ON(!folio_test_large(folio)))
|
|
return false;
|
|
|
|
return cma_release(cma, &folio->page, folio_nr_pages(folio));
|
|
}
|
|
|
|
int cma_for_each_area(int (*it)(struct cma *cma, void *data), void *data)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cma_area_count; i++) {
|
|
int ret = it(&cma_areas[i], data);
|
|
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|