linux-stable/kernel/sched/ext_idle.c
Tejun Heo 273cc94965 sched_ext: Call ops.update_idle() after updating builtin idle bits
BPF schedulers that use both builtin CPU idle mechanism and
ops.update_idle() may want to use the latter to create interlocking between
ops.enqueue() and CPU idle transitions so that either ops.enqueue() sees the
idle bit or ops.update_idle() sees the task queued somewhere. This can
prevent race conditions where CPUs go idle while tasks are waiting in DSQs.

For such interlocking to work, ops.update_idle() must be called after
builtin CPU masks are updated. Relocate the invocation. Currently, there are
no ordering requirements on transitions from idle and this relocation isn't
expected to make meaningful differences in that direction.

This also makes the ops.update_idle() behavior semantically consistent:
any action performed in this callback should be able to override the
builtin idle state, not the other way around.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-and-tested-by: Andrea Righi <arighi@nvidia.com>
Acked-by: Changwoo Min <changwoo@igalia.com>
2025-05-22 09:25:15 -10:00

1315 lines
37 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
*
* Built-in idle CPU tracking policy.
*
* Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
* Copyright (c) 2022 Tejun Heo <tj@kernel.org>
* Copyright (c) 2022 David Vernet <dvernet@meta.com>
* Copyright (c) 2024 Andrea Righi <arighi@nvidia.com>
*/
#include "ext_idle.h"
/* Enable/disable built-in idle CPU selection policy */
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_enabled);
/* Enable/disable per-node idle cpumasks */
static DEFINE_STATIC_KEY_FALSE(scx_builtin_idle_per_node);
#ifdef CONFIG_SMP
/* Enable/disable LLC aware optimizations */
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_llc);
/* Enable/disable NUMA aware optimizations */
static DEFINE_STATIC_KEY_FALSE(scx_selcpu_topo_numa);
/*
* cpumasks to track idle CPUs within each NUMA node.
*
* If SCX_OPS_BUILTIN_IDLE_PER_NODE is not enabled, a single global cpumask
* from is used to track all the idle CPUs in the system.
*/
struct scx_idle_cpus {
cpumask_var_t cpu;
cpumask_var_t smt;
};
/*
* Global host-wide idle cpumasks (used when SCX_OPS_BUILTIN_IDLE_PER_NODE
* is not enabled).
*/
static struct scx_idle_cpus scx_idle_global_masks;
/*
* Per-node idle cpumasks.
*/
static struct scx_idle_cpus **scx_idle_node_masks;
/*
* Local per-CPU cpumasks (used to generate temporary idle cpumasks).
*/
static DEFINE_PER_CPU(cpumask_var_t, local_idle_cpumask);
static DEFINE_PER_CPU(cpumask_var_t, local_llc_idle_cpumask);
static DEFINE_PER_CPU(cpumask_var_t, local_numa_idle_cpumask);
/*
* Return the idle masks associated to a target @node.
*
* NUMA_NO_NODE identifies the global idle cpumask.
*/
static struct scx_idle_cpus *idle_cpumask(int node)
{
return node == NUMA_NO_NODE ? &scx_idle_global_masks : scx_idle_node_masks[node];
}
/*
* Returns the NUMA node ID associated with a @cpu, or NUMA_NO_NODE if
* per-node idle cpumasks are disabled.
*/
static int scx_cpu_node_if_enabled(int cpu)
{
if (!static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node))
return NUMA_NO_NODE;
return cpu_to_node(cpu);
}
bool scx_idle_test_and_clear_cpu(int cpu)
{
int node = scx_cpu_node_if_enabled(cpu);
struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
#ifdef CONFIG_SCHED_SMT
/*
* SMT mask should be cleared whether we can claim @cpu or not. The SMT
* cluster is not wholly idle either way. This also prevents
* scx_pick_idle_cpu() from getting caught in an infinite loop.
*/
if (sched_smt_active()) {
const struct cpumask *smt = cpu_smt_mask(cpu);
struct cpumask *idle_smts = idle_cpumask(node)->smt;
/*
* If offline, @cpu is not its own sibling and
* scx_pick_idle_cpu() can get caught in an infinite loop as
* @cpu is never cleared from the idle SMT mask. Ensure that
* @cpu is eventually cleared.
*
* NOTE: Use cpumask_intersects() and cpumask_test_cpu() to
* reduce memory writes, which may help alleviate cache
* coherence pressure.
*/
if (cpumask_intersects(smt, idle_smts))
cpumask_andnot(idle_smts, idle_smts, smt);
else if (cpumask_test_cpu(cpu, idle_smts))
__cpumask_clear_cpu(cpu, idle_smts);
}
#endif
return cpumask_test_and_clear_cpu(cpu, idle_cpus);
}
/*
* Pick an idle CPU in a specific NUMA node.
*/
static s32 pick_idle_cpu_in_node(const struct cpumask *cpus_allowed, int node, u64 flags)
{
int cpu;
retry:
if (sched_smt_active()) {
cpu = cpumask_any_and_distribute(idle_cpumask(node)->smt, cpus_allowed);
if (cpu < nr_cpu_ids)
goto found;
if (flags & SCX_PICK_IDLE_CORE)
return -EBUSY;
}
cpu = cpumask_any_and_distribute(idle_cpumask(node)->cpu, cpus_allowed);
if (cpu >= nr_cpu_ids)
return -EBUSY;
found:
if (scx_idle_test_and_clear_cpu(cpu))
return cpu;
else
goto retry;
}
/*
* Tracks nodes that have not yet been visited when searching for an idle
* CPU across all available nodes.
*/
static DEFINE_PER_CPU(nodemask_t, per_cpu_unvisited);
/*
* Search for an idle CPU across all nodes, excluding @node.
*/
static s32 pick_idle_cpu_from_online_nodes(const struct cpumask *cpus_allowed, int node, u64 flags)
{
nodemask_t *unvisited;
s32 cpu = -EBUSY;
preempt_disable();
unvisited = this_cpu_ptr(&per_cpu_unvisited);
/*
* Restrict the search to the online nodes (excluding the current
* node that has been visited already).
*/
nodes_copy(*unvisited, node_states[N_ONLINE]);
node_clear(node, *unvisited);
/*
* Traverse all nodes in order of increasing distance, starting
* from @node.
*
* This loop is O(N^2), with N being the amount of NUMA nodes,
* which might be quite expensive in large NUMA systems. However,
* this complexity comes into play only when a scheduler enables
* SCX_OPS_BUILTIN_IDLE_PER_NODE and it's requesting an idle CPU
* without specifying a target NUMA node, so it shouldn't be a
* bottleneck is most cases.
*
* As a future optimization we may want to cache the list of nodes
* in a per-node array, instead of actually traversing them every
* time.
*/
for_each_node_numadist(node, *unvisited) {
cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
if (cpu >= 0)
break;
}
preempt_enable();
return cpu;
}
/*
* Find an idle CPU in the system, starting from @node.
*/
s32 scx_pick_idle_cpu(const struct cpumask *cpus_allowed, int node, u64 flags)
{
s32 cpu;
/*
* Always search in the starting node first (this is an
* optimization that can save some cycles even when the search is
* not limited to a single node).
*/
cpu = pick_idle_cpu_in_node(cpus_allowed, node, flags);
if (cpu >= 0)
return cpu;
/*
* Stop the search if we are using only a single global cpumask
* (NUMA_NO_NODE) or if the search is restricted to the first node
* only.
*/
if (node == NUMA_NO_NODE || flags & SCX_PICK_IDLE_IN_NODE)
return -EBUSY;
/*
* Extend the search to the other online nodes.
*/
return pick_idle_cpu_from_online_nodes(cpus_allowed, node, flags);
}
/*
* Return the amount of CPUs in the same LLC domain of @cpu (or zero if the LLC
* domain is not defined).
*/
static unsigned int llc_weight(s32 cpu)
{
struct sched_domain *sd;
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd)
return 0;
return sd->span_weight;
}
/*
* Return the cpumask representing the LLC domain of @cpu (or NULL if the LLC
* domain is not defined).
*/
static struct cpumask *llc_span(s32 cpu)
{
struct sched_domain *sd;
sd = rcu_dereference(per_cpu(sd_llc, cpu));
if (!sd)
return 0;
return sched_domain_span(sd);
}
/*
* Return the amount of CPUs in the same NUMA domain of @cpu (or zero if the
* NUMA domain is not defined).
*/
static unsigned int numa_weight(s32 cpu)
{
struct sched_domain *sd;
struct sched_group *sg;
sd = rcu_dereference(per_cpu(sd_numa, cpu));
if (!sd)
return 0;
sg = sd->groups;
if (!sg)
return 0;
return sg->group_weight;
}
/*
* Return the cpumask representing the NUMA domain of @cpu (or NULL if the NUMA
* domain is not defined).
*/
static struct cpumask *numa_span(s32 cpu)
{
struct sched_domain *sd;
struct sched_group *sg;
sd = rcu_dereference(per_cpu(sd_numa, cpu));
if (!sd)
return NULL;
sg = sd->groups;
if (!sg)
return NULL;
return sched_group_span(sg);
}
/*
* Return true if the LLC domains do not perfectly overlap with the NUMA
* domains, false otherwise.
*/
static bool llc_numa_mismatch(void)
{
int cpu;
/*
* We need to scan all online CPUs to verify whether their scheduling
* domains overlap.
*
* While it is rare to encounter architectures with asymmetric NUMA
* topologies, CPU hotplugging or virtualized environments can result
* in asymmetric configurations.
*
* For example:
*
* NUMA 0:
* - LLC 0: cpu0..cpu7
* - LLC 1: cpu8..cpu15 [offline]
*
* NUMA 1:
* - LLC 0: cpu16..cpu23
* - LLC 1: cpu24..cpu31
*
* In this case, if we only check the first online CPU (cpu0), we might
* incorrectly assume that the LLC and NUMA domains are fully
* overlapping, which is incorrect (as NUMA 1 has two distinct LLC
* domains).
*/
for_each_online_cpu(cpu)
if (llc_weight(cpu) != numa_weight(cpu))
return true;
return false;
}
/*
* Initialize topology-aware scheduling.
*
* Detect if the system has multiple LLC or multiple NUMA domains and enable
* cache-aware / NUMA-aware scheduling optimizations in the default CPU idle
* selection policy.
*
* Assumption: the kernel's internal topology representation assumes that each
* CPU belongs to a single LLC domain, and that each LLC domain is entirely
* contained within a single NUMA node.
*/
void scx_idle_update_selcpu_topology(struct sched_ext_ops *ops)
{
bool enable_llc = false, enable_numa = false;
unsigned int nr_cpus;
s32 cpu = cpumask_first(cpu_online_mask);
/*
* Enable LLC domain optimization only when there are multiple LLC
* domains among the online CPUs. If all online CPUs are part of a
* single LLC domain, the idle CPU selection logic can choose any
* online CPU without bias.
*
* Note that it is sufficient to check the LLC domain of the first
* online CPU to determine whether a single LLC domain includes all
* CPUs.
*/
rcu_read_lock();
nr_cpus = llc_weight(cpu);
if (nr_cpus > 0) {
if (nr_cpus < num_online_cpus())
enable_llc = true;
pr_debug("sched_ext: LLC=%*pb weight=%u\n",
cpumask_pr_args(llc_span(cpu)), llc_weight(cpu));
}
/*
* Enable NUMA optimization only when there are multiple NUMA domains
* among the online CPUs and the NUMA domains don't perfectly overlaps
* with the LLC domains.
*
* If all CPUs belong to the same NUMA node and the same LLC domain,
* enabling both NUMA and LLC optimizations is unnecessary, as checking
* for an idle CPU in the same domain twice is redundant.
*
* If SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled ignore the NUMA
* optimization, as we would naturally select idle CPUs within
* specific NUMA nodes querying the corresponding per-node cpumask.
*/
if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
nr_cpus = numa_weight(cpu);
if (nr_cpus > 0) {
if (nr_cpus < num_online_cpus() && llc_numa_mismatch())
enable_numa = true;
pr_debug("sched_ext: NUMA=%*pb weight=%u\n",
cpumask_pr_args(numa_span(cpu)), nr_cpus);
}
}
rcu_read_unlock();
pr_debug("sched_ext: LLC idle selection %s\n",
str_enabled_disabled(enable_llc));
pr_debug("sched_ext: NUMA idle selection %s\n",
str_enabled_disabled(enable_numa));
if (enable_llc)
static_branch_enable_cpuslocked(&scx_selcpu_topo_llc);
else
static_branch_disable_cpuslocked(&scx_selcpu_topo_llc);
if (enable_numa)
static_branch_enable_cpuslocked(&scx_selcpu_topo_numa);
else
static_branch_disable_cpuslocked(&scx_selcpu_topo_numa);
}
/*
* Return true if @p can run on all possible CPUs, false otherwise.
*/
static inline bool task_affinity_all(const struct task_struct *p)
{
return p->nr_cpus_allowed >= num_possible_cpus();
}
/*
* Built-in CPU idle selection policy:
*
* 1. Prioritize full-idle cores:
* - always prioritize CPUs from fully idle cores (both logical CPUs are
* idle) to avoid interference caused by SMT.
*
* 2. Reuse the same CPU:
* - prefer the last used CPU to take advantage of cached data (L1, L2) and
* branch prediction optimizations.
*
* 3. Pick a CPU within the same LLC (Last-Level Cache):
* - if the above conditions aren't met, pick a CPU that shares the same
* LLC, if the LLC domain is a subset of @cpus_allowed, to maintain
* cache locality.
*
* 4. Pick a CPU within the same NUMA node, if enabled:
* - choose a CPU from the same NUMA node, if the node cpumask is a
* subset of @cpus_allowed, to reduce memory access latency.
*
* 5. Pick any idle CPU within the @cpus_allowed domain.
*
* Step 3 and 4 are performed only if the system has, respectively,
* multiple LLCs / multiple NUMA nodes (see scx_selcpu_topo_llc and
* scx_selcpu_topo_numa) and they don't contain the same subset of CPUs.
*
* If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, the search will always
* begin in @prev_cpu's node and proceed to other nodes in order of
* increasing distance.
*
* Return the picked CPU if idle, or a negative value otherwise.
*
* NOTE: tasks that can only run on 1 CPU are excluded by this logic, because
* we never call ops.select_cpu() for them, see select_task_rq().
*/
s32 scx_select_cpu_dfl(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
const struct cpumask *cpus_allowed, u64 flags)
{
const struct cpumask *llc_cpus = NULL, *numa_cpus = NULL;
const struct cpumask *allowed = cpus_allowed ?: p->cpus_ptr;
int node = scx_cpu_node_if_enabled(prev_cpu);
s32 cpu;
preempt_disable();
/*
* Determine the subset of CPUs usable by @p within @cpus_allowed.
*/
if (allowed != p->cpus_ptr) {
struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_idle_cpumask);
if (task_affinity_all(p)) {
allowed = cpus_allowed;
} else if (cpumask_and(local_cpus, cpus_allowed, p->cpus_ptr)) {
allowed = local_cpus;
} else {
cpu = -EBUSY;
goto out_enable;
}
/*
* If @prev_cpu is not in the allowed CPUs, skip topology
* optimizations and try to pick any idle CPU usable by the
* task.
*
* If %SCX_OPS_BUILTIN_IDLE_PER_NODE is enabled, prioritize
* the current node, as it may optimize some waker->wakee
* workloads.
*/
if (!cpumask_test_cpu(prev_cpu, allowed)) {
node = scx_cpu_node_if_enabled(smp_processor_id());
cpu = scx_pick_idle_cpu(allowed, node, flags);
goto out_enable;
}
}
/*
* This is necessary to protect llc_cpus.
*/
rcu_read_lock();
/*
* Determine the subset of CPUs that the task can use in its
* current LLC and node.
*
* If the task can run on all CPUs, use the node and LLC cpumasks
* directly.
*/
if (static_branch_maybe(CONFIG_NUMA, &scx_selcpu_topo_numa)) {
struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_numa_idle_cpumask);
const struct cpumask *cpus = numa_span(prev_cpu);
if (allowed == p->cpus_ptr && task_affinity_all(p))
numa_cpus = cpus;
else if (cpus && cpumask_and(local_cpus, allowed, cpus))
numa_cpus = local_cpus;
}
if (static_branch_maybe(CONFIG_SCHED_MC, &scx_selcpu_topo_llc)) {
struct cpumask *local_cpus = this_cpu_cpumask_var_ptr(local_llc_idle_cpumask);
const struct cpumask *cpus = llc_span(prev_cpu);
if (allowed == p->cpus_ptr && task_affinity_all(p))
llc_cpus = cpus;
else if (cpus && cpumask_and(local_cpus, allowed, cpus))
llc_cpus = local_cpus;
}
/*
* If WAKE_SYNC, try to migrate the wakee to the waker's CPU.
*/
if (wake_flags & SCX_WAKE_SYNC) {
int waker_node;
/*
* If the waker's CPU is cache affine and prev_cpu is idle,
* then avoid a migration.
*/
cpu = smp_processor_id();
if (cpus_share_cache(cpu, prev_cpu) &&
scx_idle_test_and_clear_cpu(prev_cpu)) {
cpu = prev_cpu;
goto out_unlock;
}
/*
* If the waker's local DSQ is empty, and the system is under
* utilized, try to wake up @p to the local DSQ of the waker.
*
* Checking only for an empty local DSQ is insufficient as it
* could give the wakee an unfair advantage when the system is
* oversaturated.
*
* Checking only for the presence of idle CPUs is also
* insufficient as the local DSQ of the waker could have tasks
* piled up on it even if there is an idle core elsewhere on
* the system.
*/
waker_node = cpu_to_node(cpu);
if (!(current->flags & PF_EXITING) &&
cpu_rq(cpu)->scx.local_dsq.nr == 0 &&
(!(flags & SCX_PICK_IDLE_IN_NODE) || (waker_node == node)) &&
!cpumask_empty(idle_cpumask(waker_node)->cpu)) {
if (cpumask_test_cpu(cpu, allowed))
goto out_unlock;
}
}
/*
* If CPU has SMT, any wholly idle CPU is likely a better pick than
* partially idle @prev_cpu.
*/
if (sched_smt_active()) {
/*
* Keep using @prev_cpu if it's part of a fully idle core.
*/
if (cpumask_test_cpu(prev_cpu, idle_cpumask(node)->smt) &&
scx_idle_test_and_clear_cpu(prev_cpu)) {
cpu = prev_cpu;
goto out_unlock;
}
/*
* Search for any fully idle core in the same LLC domain.
*/
if (llc_cpus) {
cpu = pick_idle_cpu_in_node(llc_cpus, node, SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any fully idle core in the same NUMA node.
*/
if (numa_cpus) {
cpu = pick_idle_cpu_in_node(numa_cpus, node, SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any full-idle core usable by the task.
*
* If the node-aware idle CPU selection policy is enabled
* (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always
* begin in prev_cpu's node and proceed to other nodes in
* order of increasing distance.
*/
cpu = scx_pick_idle_cpu(allowed, node, flags | SCX_PICK_IDLE_CORE);
if (cpu >= 0)
goto out_unlock;
/*
* Give up if we're strictly looking for a full-idle SMT
* core.
*/
if (flags & SCX_PICK_IDLE_CORE) {
cpu = -EBUSY;
goto out_unlock;
}
}
/*
* Use @prev_cpu if it's idle.
*/
if (scx_idle_test_and_clear_cpu(prev_cpu)) {
cpu = prev_cpu;
goto out_unlock;
}
/*
* Search for any idle CPU in the same LLC domain.
*/
if (llc_cpus) {
cpu = pick_idle_cpu_in_node(llc_cpus, node, 0);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any idle CPU in the same NUMA node.
*/
if (numa_cpus) {
cpu = pick_idle_cpu_in_node(numa_cpus, node, 0);
if (cpu >= 0)
goto out_unlock;
}
/*
* Search for any idle CPU usable by the task.
*
* If the node-aware idle CPU selection policy is enabled
* (%SCX_OPS_BUILTIN_IDLE_PER_NODE), the search will always begin
* in prev_cpu's node and proceed to other nodes in order of
* increasing distance.
*/
cpu = scx_pick_idle_cpu(allowed, node, flags);
out_unlock:
rcu_read_unlock();
out_enable:
preempt_enable();
return cpu;
}
/*
* Initialize global and per-node idle cpumasks.
*/
void scx_idle_init_masks(void)
{
int i;
/* Allocate global idle cpumasks */
BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.cpu, GFP_KERNEL));
BUG_ON(!alloc_cpumask_var(&scx_idle_global_masks.smt, GFP_KERNEL));
/* Allocate per-node idle cpumasks */
scx_idle_node_masks = kcalloc(num_possible_nodes(),
sizeof(*scx_idle_node_masks), GFP_KERNEL);
BUG_ON(!scx_idle_node_masks);
for_each_node(i) {
scx_idle_node_masks[i] = kzalloc_node(sizeof(**scx_idle_node_masks),
GFP_KERNEL, i);
BUG_ON(!scx_idle_node_masks[i]);
BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->cpu, GFP_KERNEL, i));
BUG_ON(!alloc_cpumask_var_node(&scx_idle_node_masks[i]->smt, GFP_KERNEL, i));
}
/* Allocate local per-cpu idle cpumasks */
for_each_possible_cpu(i) {
BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_idle_cpumask, i),
GFP_KERNEL, cpu_to_node(i)));
BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_llc_idle_cpumask, i),
GFP_KERNEL, cpu_to_node(i)));
BUG_ON(!alloc_cpumask_var_node(&per_cpu(local_numa_idle_cpumask, i),
GFP_KERNEL, cpu_to_node(i)));
}
}
static void update_builtin_idle(int cpu, bool idle)
{
int node = scx_cpu_node_if_enabled(cpu);
struct cpumask *idle_cpus = idle_cpumask(node)->cpu;
assign_cpu(cpu, idle_cpus, idle);
#ifdef CONFIG_SCHED_SMT
if (sched_smt_active()) {
const struct cpumask *smt = cpu_smt_mask(cpu);
struct cpumask *idle_smts = idle_cpumask(node)->smt;
if (idle) {
/*
* idle_smt handling is racy but that's fine as it's
* only for optimization and self-correcting.
*/
if (!cpumask_subset(smt, idle_cpus))
return;
cpumask_or(idle_smts, idle_smts, smt);
} else {
cpumask_andnot(idle_smts, idle_smts, smt);
}
}
#endif
}
/*
* Update the idle state of a CPU to @idle.
*
* If @do_notify is true, ops.update_idle() is invoked to notify the scx
* scheduler of an actual idle state transition (idle to busy or vice
* versa). If @do_notify is false, only the idle state in the idle masks is
* refreshed without invoking ops.update_idle().
*
* This distinction is necessary, because an idle CPU can be "reserved" and
* awakened via scx_bpf_pick_idle_cpu() + scx_bpf_kick_cpu(), marking it as
* busy even if no tasks are dispatched. In this case, the CPU may return
* to idle without a true state transition. Refreshing the idle masks
* without invoking ops.update_idle() ensures accurate idle state tracking
* while avoiding unnecessary updates and maintaining balanced state
* transitions.
*/
void __scx_update_idle(struct rq *rq, bool idle, bool do_notify)
{
struct scx_sched *sch = scx_root;
int cpu = cpu_of(rq);
lockdep_assert_rq_held(rq);
/*
* Update the idle masks:
* - for real idle transitions (do_notify == true)
* - for idle-to-idle transitions (indicated by the previous task
* being the idle thread, managed by pick_task_idle())
*
* Skip updating idle masks if the previous task is not the idle
* thread, since set_next_task_idle() has already handled it when
* transitioning from a task to the idle thread (calling this
* function with do_notify == true).
*
* In this way we can avoid updating the idle masks twice,
* unnecessarily.
*/
if (static_branch_likely(&scx_builtin_idle_enabled))
if (do_notify || is_idle_task(rq->curr))
update_builtin_idle(cpu, idle);
/*
* Trigger ops.update_idle() only when transitioning from a task to
* the idle thread and vice versa.
*
* Idle transitions are indicated by do_notify being set to true,
* managed by put_prev_task_idle()/set_next_task_idle().
*
* This must come after builtin idle update so that BPF schedulers can
* create interlocking between ops.update_idle() and ops.enqueue() -
* either enqueue() sees the idle bit or update_idle() sees the task
* that enqueue() queued.
*/
if (SCX_HAS_OP(sch, update_idle) && do_notify && !scx_rq_bypassing(rq))
SCX_CALL_OP(sch, SCX_KF_REST, update_idle, rq, cpu_of(rq), idle);
}
static void reset_idle_masks(struct sched_ext_ops *ops)
{
int node;
/*
* Consider all online cpus idle. Should converge to the actual state
* quickly.
*/
if (!(ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)) {
cpumask_copy(idle_cpumask(NUMA_NO_NODE)->cpu, cpu_online_mask);
cpumask_copy(idle_cpumask(NUMA_NO_NODE)->smt, cpu_online_mask);
return;
}
for_each_node(node) {
const struct cpumask *node_mask = cpumask_of_node(node);
cpumask_and(idle_cpumask(node)->cpu, cpu_online_mask, node_mask);
cpumask_and(idle_cpumask(node)->smt, cpu_online_mask, node_mask);
}
}
#endif /* CONFIG_SMP */
void scx_idle_enable(struct sched_ext_ops *ops)
{
if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))
static_branch_enable_cpuslocked(&scx_builtin_idle_enabled);
else
static_branch_disable_cpuslocked(&scx_builtin_idle_enabled);
if (ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE)
static_branch_enable_cpuslocked(&scx_builtin_idle_per_node);
else
static_branch_disable_cpuslocked(&scx_builtin_idle_per_node);
#ifdef CONFIG_SMP
reset_idle_masks(ops);
#endif
}
void scx_idle_disable(void)
{
static_branch_disable(&scx_builtin_idle_enabled);
static_branch_disable(&scx_builtin_idle_per_node);
}
/********************************************************************************
* Helpers that can be called from the BPF scheduler.
*/
static int validate_node(int node)
{
if (!static_branch_likely(&scx_builtin_idle_per_node)) {
scx_kf_error("per-node idle tracking is disabled");
return -EOPNOTSUPP;
}
/* Return no entry for NUMA_NO_NODE (not a critical scx error) */
if (node == NUMA_NO_NODE)
return -ENOENT;
/* Make sure node is in a valid range */
if (node < 0 || node >= nr_node_ids) {
scx_kf_error("invalid node %d", node);
return -EINVAL;
}
/* Make sure the node is part of the set of possible nodes */
if (!node_possible(node)) {
scx_kf_error("unavailable node %d", node);
return -EINVAL;
}
return node;
}
__bpf_kfunc_start_defs();
static bool check_builtin_idle_enabled(void)
{
if (static_branch_likely(&scx_builtin_idle_enabled))
return true;
scx_kf_error("built-in idle tracking is disabled");
return false;
}
s32 select_cpu_from_kfunc(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
const struct cpumask *allowed, u64 flags)
{
struct rq *rq;
struct rq_flags rf;
s32 cpu;
if (!kf_cpu_valid(prev_cpu, NULL))
return -EINVAL;
if (!check_builtin_idle_enabled())
return -EBUSY;
/*
* If called from an unlocked context, acquire the task's rq lock,
* so that we can safely access p->cpus_ptr and p->nr_cpus_allowed.
*
* Otherwise, allow to use this kfunc only from ops.select_cpu()
* and ops.select_enqueue().
*/
if (scx_kf_allowed_if_unlocked()) {
rq = task_rq_lock(p, &rf);
} else {
if (!scx_kf_allowed(SCX_KF_SELECT_CPU | SCX_KF_ENQUEUE))
return -EPERM;
rq = scx_locked_rq();
}
/*
* Validate locking correctness to access p->cpus_ptr and
* p->nr_cpus_allowed: if we're holding an rq lock, we're safe;
* otherwise, assert that p->pi_lock is held.
*/
if (!rq)
lockdep_assert_held(&p->pi_lock);
#ifdef CONFIG_SMP
/*
* This may also be called from ops.enqueue(), so we need to handle
* per-CPU tasks as well. For these tasks, we can skip all idle CPU
* selection optimizations and simply check whether the previously
* used CPU is idle and within the allowed cpumask.
*/
if (p->nr_cpus_allowed == 1) {
if (cpumask_test_cpu(prev_cpu, allowed ?: p->cpus_ptr) &&
scx_idle_test_and_clear_cpu(prev_cpu))
cpu = prev_cpu;
else
cpu = -EBUSY;
} else {
cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags,
allowed ?: p->cpus_ptr, flags);
}
#else
cpu = -EBUSY;
#endif
if (scx_kf_allowed_if_unlocked())
task_rq_unlock(rq, p, &rf);
return cpu;
}
/**
* scx_bpf_cpu_node - Return the NUMA node the given @cpu belongs to, or
* trigger an error if @cpu is invalid
* @cpu: target CPU
*/
__bpf_kfunc int scx_bpf_cpu_node(s32 cpu)
{
#ifdef CONFIG_NUMA
if (!kf_cpu_valid(cpu, NULL))
return NUMA_NO_NODE;
return cpu_to_node(cpu);
#else
return 0;
#endif
}
/**
* scx_bpf_select_cpu_dfl - The default implementation of ops.select_cpu()
* @p: task_struct to select a CPU for
* @prev_cpu: CPU @p was on previously
* @wake_flags: %SCX_WAKE_* flags
* @is_idle: out parameter indicating whether the returned CPU is idle
*
* Can be called from ops.select_cpu(), ops.enqueue(), or from an unlocked
* context such as a BPF test_run() call, as long as built-in CPU selection
* is enabled: ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE
* is set.
*
* Returns the picked CPU with *@is_idle indicating whether the picked CPU is
* currently idle and thus a good candidate for direct dispatching.
*/
__bpf_kfunc s32 scx_bpf_select_cpu_dfl(struct task_struct *p, s32 prev_cpu,
u64 wake_flags, bool *is_idle)
{
s32 cpu;
cpu = select_cpu_from_kfunc(p, prev_cpu, wake_flags, NULL, 0);
if (cpu >= 0) {
*is_idle = true;
return cpu;
}
*is_idle = false;
return prev_cpu;
}
/**
* scx_bpf_select_cpu_and - Pick an idle CPU usable by task @p,
* prioritizing those in @cpus_allowed
* @p: task_struct to select a CPU for
* @prev_cpu: CPU @p was on previously
* @wake_flags: %SCX_WAKE_* flags
* @cpus_allowed: cpumask of allowed CPUs
* @flags: %SCX_PICK_IDLE* flags
*
* Can be called from ops.select_cpu(), ops.enqueue(), or from an unlocked
* context such as a BPF test_run() call, as long as built-in CPU selection
* is enabled: ops.update_idle() is missing or %SCX_OPS_KEEP_BUILTIN_IDLE
* is set.
*
* @p, @prev_cpu and @wake_flags match ops.select_cpu().
*
* Returns the selected idle CPU, which will be automatically awakened upon
* returning from ops.select_cpu() and can be used for direct dispatch, or
* a negative value if no idle CPU is available.
*/
__bpf_kfunc s32 scx_bpf_select_cpu_and(struct task_struct *p, s32 prev_cpu, u64 wake_flags,
const struct cpumask *cpus_allowed, u64 flags)
{
return select_cpu_from_kfunc(p, prev_cpu, wake_flags, cpus_allowed, flags);
}
/**
* scx_bpf_get_idle_cpumask_node - Get a referenced kptr to the
* idle-tracking per-CPU cpumask of a target NUMA node.
* @node: target NUMA node
*
* Returns an empty cpumask if idle tracking is not enabled, if @node is
* not valid, or running on a UP kernel. In this case the actual error will
* be reported to the BPF scheduler via scx_error().
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask_node(int node)
{
node = validate_node(node);
if (node < 0)
return cpu_none_mask;
#ifdef CONFIG_SMP
return idle_cpumask(node)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_get_idle_cpumask - Get a referenced kptr to the idle-tracking
* per-CPU cpumask.
*
* Returns an empty mask if idle tracking is not enabled, or running on a
* UP kernel.
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_cpumask(void)
{
if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
scx_kf_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
return cpu_none_mask;
}
if (!check_builtin_idle_enabled())
return cpu_none_mask;
#ifdef CONFIG_SMP
return idle_cpumask(NUMA_NO_NODE)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_get_idle_smtmask_node - Get a referenced kptr to the
* idle-tracking, per-physical-core cpumask of a target NUMA node. Can be
* used to determine if an entire physical core is free.
* @node: target NUMA node
*
* Returns an empty cpumask if idle tracking is not enabled, if @node is
* not valid, or running on a UP kernel. In this case the actual error will
* be reported to the BPF scheduler via scx_error().
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask_node(int node)
{
node = validate_node(node);
if (node < 0)
return cpu_none_mask;
#ifdef CONFIG_SMP
if (sched_smt_active())
return idle_cpumask(node)->smt;
else
return idle_cpumask(node)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_get_idle_smtmask - Get a referenced kptr to the idle-tracking,
* per-physical-core cpumask. Can be used to determine if an entire physical
* core is free.
*
* Returns an empty mask if idle tracking is not enabled, or running on a
* UP kernel.
*/
__bpf_kfunc const struct cpumask *scx_bpf_get_idle_smtmask(void)
{
if (static_branch_unlikely(&scx_builtin_idle_per_node)) {
scx_kf_error("SCX_OPS_BUILTIN_IDLE_PER_NODE enabled");
return cpu_none_mask;
}
if (!check_builtin_idle_enabled())
return cpu_none_mask;
#ifdef CONFIG_SMP
if (sched_smt_active())
return idle_cpumask(NUMA_NO_NODE)->smt;
else
return idle_cpumask(NUMA_NO_NODE)->cpu;
#else
return cpu_none_mask;
#endif
}
/**
* scx_bpf_put_idle_cpumask - Release a previously acquired referenced kptr to
* either the percpu, or SMT idle-tracking cpumask.
* @idle_mask: &cpumask to use
*/
__bpf_kfunc void scx_bpf_put_idle_cpumask(const struct cpumask *idle_mask)
{
/*
* Empty function body because we aren't actually acquiring or releasing
* a reference to a global idle cpumask, which is read-only in the
* caller and is never released. The acquire / release semantics here
* are just used to make the cpumask a trusted pointer in the caller.
*/
}
/**
* scx_bpf_test_and_clear_cpu_idle - Test and clear @cpu's idle state
* @cpu: cpu to test and clear idle for
*
* Returns %true if @cpu was idle and its idle state was successfully cleared.
* %false otherwise.
*
* Unavailable if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
*/
__bpf_kfunc bool scx_bpf_test_and_clear_cpu_idle(s32 cpu)
{
if (!check_builtin_idle_enabled())
return false;
if (kf_cpu_valid(cpu, NULL))
return scx_idle_test_and_clear_cpu(cpu);
else
return false;
}
/**
* scx_bpf_pick_idle_cpu_node - Pick and claim an idle cpu from @node
* @cpus_allowed: Allowed cpumask
* @node: target NUMA node
* @flags: %SCX_PICK_IDLE_* flags
*
* Pick and claim an idle cpu in @cpus_allowed from the NUMA node @node.
*
* Returns the picked idle cpu number on success, or -%EBUSY if no matching
* cpu was found.
*
* The search starts from @node and proceeds to other online NUMA nodes in
* order of increasing distance (unless SCX_PICK_IDLE_IN_NODE is specified,
* in which case the search is limited to the target @node).
*
* Always returns an error if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set, or if
* %SCX_OPS_BUILTIN_IDLE_PER_NODE is not set.
*/
__bpf_kfunc s32 scx_bpf_pick_idle_cpu_node(const struct cpumask *cpus_allowed,
int node, u64 flags)
{
node = validate_node(node);
if (node < 0)
return node;
return scx_pick_idle_cpu(cpus_allowed, node, flags);
}
/**
* scx_bpf_pick_idle_cpu - Pick and claim an idle cpu
* @cpus_allowed: Allowed cpumask
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. Returns the picked idle cpu
* number on success. -%EBUSY if no matching cpu was found.
*
* Idle CPU tracking may race against CPU scheduling state transitions. For
* example, this function may return -%EBUSY as CPUs are transitioning into the
* idle state. If the caller then assumes that there will be dispatch events on
* the CPUs as they were all busy, the scheduler may end up stalling with CPUs
* idling while there are pending tasks. Use scx_bpf_pick_any_cpu() and
* scx_bpf_kick_cpu() to guarantee that there will be at least one dispatch
* event in the near future.
*
* Unavailable if ops.update_idle() is implemented and
* %SCX_OPS_KEEP_BUILTIN_IDLE is not set.
*
* Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
* scx_bpf_pick_idle_cpu_node() instead.
*/
__bpf_kfunc s32 scx_bpf_pick_idle_cpu(const struct cpumask *cpus_allowed,
u64 flags)
{
if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
scx_kf_error("per-node idle tracking is enabled");
return -EBUSY;
}
if (!check_builtin_idle_enabled())
return -EBUSY;
return scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
}
/**
* scx_bpf_pick_any_cpu_node - Pick and claim an idle cpu if available
* or pick any CPU from @node
* @cpus_allowed: Allowed cpumask
* @node: target NUMA node
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
* empty.
*
* The search starts from @node and proceeds to other online NUMA nodes in
* order of increasing distance (unless %SCX_PICK_IDLE_IN_NODE is specified,
* in which case the search is limited to the target @node, regardless of
* the CPU idle state).
*
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
* set, this function can't tell which CPUs are idle and will always pick any
* CPU.
*/
__bpf_kfunc s32 scx_bpf_pick_any_cpu_node(const struct cpumask *cpus_allowed,
int node, u64 flags)
{
s32 cpu;
node = validate_node(node);
if (node < 0)
return node;
cpu = scx_pick_idle_cpu(cpus_allowed, node, flags);
if (cpu >= 0)
return cpu;
if (flags & SCX_PICK_IDLE_IN_NODE)
cpu = cpumask_any_and_distribute(cpumask_of_node(node), cpus_allowed);
else
cpu = cpumask_any_distribute(cpus_allowed);
if (cpu < nr_cpu_ids)
return cpu;
else
return -EBUSY;
}
/**
* scx_bpf_pick_any_cpu - Pick and claim an idle cpu if available or pick any CPU
* @cpus_allowed: Allowed cpumask
* @flags: %SCX_PICK_IDLE_CPU_* flags
*
* Pick and claim an idle cpu in @cpus_allowed. If none is available, pick any
* CPU in @cpus_allowed. Guaranteed to succeed and returns the picked idle cpu
* number if @cpus_allowed is not empty. -%EBUSY is returned if @cpus_allowed is
* empty.
*
* If ops.update_idle() is implemented and %SCX_OPS_KEEP_BUILTIN_IDLE is not
* set, this function can't tell which CPUs are idle and will always pick any
* CPU.
*
* Always returns an error if %SCX_OPS_BUILTIN_IDLE_PER_NODE is set, use
* scx_bpf_pick_any_cpu_node() instead.
*/
__bpf_kfunc s32 scx_bpf_pick_any_cpu(const struct cpumask *cpus_allowed,
u64 flags)
{
s32 cpu;
if (static_branch_maybe(CONFIG_NUMA, &scx_builtin_idle_per_node)) {
scx_kf_error("per-node idle tracking is enabled");
return -EBUSY;
}
if (static_branch_likely(&scx_builtin_idle_enabled)) {
cpu = scx_pick_idle_cpu(cpus_allowed, NUMA_NO_NODE, flags);
if (cpu >= 0)
return cpu;
}
cpu = cpumask_any_distribute(cpus_allowed);
if (cpu < nr_cpu_ids)
return cpu;
else
return -EBUSY;
}
__bpf_kfunc_end_defs();
BTF_KFUNCS_START(scx_kfunc_ids_idle)
BTF_ID_FLAGS(func, scx_bpf_cpu_node)
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask_node, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask_node, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE)
BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE)
BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle)
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu_node, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu_node, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_select_cpu_and, KF_RCU)
BTF_ID_FLAGS(func, scx_bpf_select_cpu_dfl, KF_RCU)
BTF_KFUNCS_END(scx_kfunc_ids_idle)
static const struct btf_kfunc_id_set scx_kfunc_set_idle = {
.owner = THIS_MODULE,
.set = &scx_kfunc_ids_idle,
};
int scx_idle_init(void)
{
int ret;
ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &scx_kfunc_set_idle) ||
register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, &scx_kfunc_set_idle) ||
register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, &scx_kfunc_set_idle);
return ret;
}